Integer Optimization by Local Search

Integer Optimization by Local Search

Author: Joachim P. Walser

Publisher: Springer

Published: 2003-06-26

Total Pages: 146

ISBN-13: 3540483691

DOWNLOAD EBOOK

Integer Optimization addresses a wide spectrum of practically important optimization problems and represents a major challenge for algorithmics. The goal of integer optimization is to solve a system of constraints and optimization criteria over discrete variables. Integer Optimization by Local Search introduces a new approach to domain-independent integer optimization, which, unlike traditional strategies, is based on local search. It develops the central concepts and strategies of integer local search and describes possible combinations with classical methods from linear programming. The surprising effectiveness of the approach is demonstrated in a variety of case studies on large-scale, realistic problems, including production planning, timetabling, radar surveillance, and sports scheduling. The monograph is written for practitioners and researchers from artificial intelligence and operations research.


Integer Programming and Combinatorial Optimization

Integer Programming and Combinatorial Optimization

Author: Matteo Fischetti

Publisher: Springer

Published: 2007-06-26

Total Pages: 509

ISBN-13: 3540727922

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 12th International Conference on Integer Programming and Combinatorial Optimization, IPCO 2007, held in Ithaca, NY, USA, in June 2007. Among the topics addressed in the 36 revised full papers are approximation algorithms, algorithmic game theory, computational biology, integer programming, polyhedral combinatorics, scheduling theory and scheduling algorithms, as well as semidefinite programs.


Integer Programming

Integer Programming

Author: Laurence A. Wolsey

Publisher: John Wiley & Sons

Published: 2020-10-20

Total Pages: 336

ISBN-13: 1119606535

DOWNLOAD EBOOK

A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders’ decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders’ algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.


Linear and Integer Optimization

Linear and Integer Optimization

Author: Gerard Sierksma

Publisher: CRC Press

Published: 2015-05-01

Total Pages: 676

ISBN-13: 1498743129

DOWNLOAD EBOOK

Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig's simplex algorithm, duality, sensitivity analysis, integer optimization models


Constraint and Integer Programming

Constraint and Integer Programming

Author: Michela Milano

Publisher: Springer Science & Business Media

Published: 2003-11-30

Total Pages: 406

ISBN-13: 9781402075834

DOWNLOAD EBOOK

Constraint and Integer Programming presents some of the basic ideas of constraint programming and mathematical programming, explores approaches to integration, brings us up to date on heuristic methods, and attempts to discern future directions in this fast-moving field.


Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming

Author: Jon Lee

Publisher: Springer Science & Business Media

Published: 2011-12-02

Total Pages: 687

ISBN-13: 1461419271

DOWNLOAD EBOOK

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.


Theory of Linear and Integer Programming

Theory of Linear and Integer Programming

Author: Alexander Schrijver

Publisher: John Wiley & Sons

Published: 1998-06-11

Total Pages: 488

ISBN-13: 9780471982326

DOWNLOAD EBOOK

Als Ergänzung zu den mehr praxisorientierten Büchern, die auf dem Gebiet der linearen und Integerprogrammierung bereits erschienen sind, beschreibt dieses Werk die zugrunde liegende Theorie und gibt einen Überblick über wichtige Algorithmen. Der Autor diskutiert auch Anwendungen auf die kombinatorische Optimierung; neben einer ausführlichen Bibliographie finden sich umfangreiche historische Anmerkungen.


Applied Integer Programming

Applied Integer Programming

Author: Der-San Chen

Publisher: John Wiley & Sons

Published: 2010-01-12

Total Pages: 489

ISBN-13: 0470373067

DOWNLOAD EBOOK

An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and discusses the algorithms and associated practices that enable those models to be solved most efficiently. The book begins with coverage of successful applications, systematic modeling procedures, typical model types, transformation of non-MIP models, combinatorial optimization problem models, and automatic preprocessing to obtain a better formulation. Subsequent chapters present algebraic and geometric basic concepts of linear programming theory and network flows needed for understanding integer programming. Finally, the book concludes with classical and modern solution approaches as well as the key components for building an integrated software system capable of solving large-scale integer programming and combinatorial optimization problems. Throughout the book, the authors demonstrate essential concepts through numerous examples and figures. Each new concept or algorithm is accompanied by a numerical example, and, where applicable, graphics are used to draw together diverse problems or approaches into a unified whole. In addition, features of solution approaches found in today's commercial software are identified throughout the book. Thoroughly classroom-tested, Applied Integer Programming is an excellent book for integer programming courses at the upper-undergraduate and graduate levels. It also serves as a well-organized reference for professionals, software developers, and analysts who work in the fields of applied mathematics, computer science, operations research, management science, and engineering and use integer-programming techniques to model and solve real-world optimization problems.


Local Search in Combinatorial Optimization

Local Search in Combinatorial Optimization

Author: Emile Aarts

Publisher: Princeton University Press

Published: 2018-06-05

Total Pages: 525

ISBN-13: 0691187568

DOWNLOAD EBOOK

In the past three decades, local search has grown from a simple heuristic idea into a mature field of research in combinatorial optimization that is attracting ever-increasing attention. Local search is still the method of choice for NP-hard problems as it provides a robust approach for obtaining high-quality solutions to problems of a realistic size in reasonable time. Local Search in Combinatorial Optimization covers local search and its variants from both a theoretical and practical point of view, each topic discussed by a leading authority. This book is an important reference and invaluable source of inspiration for students and researchers in discrete mathematics, computer science, operations research, industrial engineering, and management science. In addition to the editors, the contributors are Mihalis Yannakakis, Craig A. Tovey, Jan H. M. Korst, Peter J. M. van Laarhoven, Alain Hertz, Eric Taillard, Dominique de Werra, Heinz Mühlenbein, Carsten Peterson, Bo Söderberg, David S. Johnson, Lyle A. McGeoch, Michel Gendreau, Gilbert Laporte, Jean-Yves Potvin, Gerard A. P. Kindervater, Martin W. P. Savelsbergh, Edward J. Anderson, Celia A. Glass, Chris N. Potts, C. L. Liu, Peichen Pan, Iiro Honkala, and Patric R. J. Östergård.