The knowledge of metal ion speciation is essential for predicting the exact toxicities of metal ion species in the environment. Metal ions can exist in various oxidation states, each of which possesses different physical and chemical properties as well as exhibit varying toxicities. Often, toxicity data is unreliable because it is based on metal io
The aim of this volume is to describe the most recent advances in areas of analytical chemistry that relate to the trace determination of metals and inorganics, as well as their distribution and forms (species) present, sample dependent. Analytical approaches are described that encompass a number of separation methods, such as gas and high performance liquid chromatography, interfaced with selective and sensitive detection methods that become unique for metal species/forms present in various samples. Hyphenated techniques are emphasized, such as interfacing HPLC with plasma induced emission spectroscopy, electrochemistry, post-column reaction chemistry, etc. Each chapter describes the latest instrumental and methodology advances that utilize some form of chromatography together with element-specific detection or mass spectrometry to provide absolute identification of the specific species of a metal present in various samples. The book will be of value to those concerned with the determination of trace levels of individual metal species present or suspected present in any given sample and to those involved in trace metal toxicology, metabolism of metal-containing drugs or chemicals, environmental exposures to metals and chemical speciation of real world samples. Government regulatory laboratories striving to detect and determine absolute levels of a metal species in any regulated sample will be interested in this volume, as will academic institutes involved in environmental toxicology, environmental chemistry, metal-DNA/protein interactions and researchers working with metal species.
Among various water and wastewater treatment technologies, the adsorption process is considered better because of lower cost, simple design and easy operation. Activated carbon (a universal adsorbent) is generally used for the removal of diverse types of pollutants from water and wastewater. Research is now being directed towards the modification of carbon surfaces to enhance its adsorption potential towards specific pollutants. However, widespread use of commercial activated carbon is sometimes restricted especially in developing or poor countries due to its higher costs. Attempts are therefore being made to develop inexpensive adsorbents utilizing abundant natural materials, agricultural and industrial waste materials. Use of waste materials as low-cost adsorbents is attractive due to their contribution in the reduction of costs for waste disposal, therefore contributing to environmental protection. This e-book explores knowledge on recent developments in adsorbents synthesis and their use in water pollution control. This handy reference work is intended for researchers and scientists actively engaged in the study of adsorption and the development and application of efficient adsorption technology for water treatment. This e-book covers a wide range of topics including modeling aspects of adsorption process and the applications of conventional and non-conventional adsorbents in water remediation emphasizing sorption mechanisms of different pollutants on the adsorbents.
Nuclear analytical techniques have many advantages over other techniques, such as high sensitivity and precision. They couple powerful selective separation with sensitive element-specific detection. The uses of metalloproteomics studies are restricted to the fields of analytical and nuclear chemistry. They also have great potential to elucidate the origins of certain diseases and assist in their diagnosis and treatment via the development of new drugs. Nuclear Analytical Techniques for Metallomics and Metalloproteomics provides readers with a comprehensive view of this relatively new and exciting area of bioanalytical and inorganic chemistry. It contains contributions from experts in disciplines as diverse as analytical chemistry, nuclear chemistry, environmental science, molecular biology and medicinal chemistry. Various nuclear analytical techniques are covered including neutron activation analysis, X-ray fluorescence, isotope tracer, M÷ssbauer spectrometry, X-ray absorption spectrometry, and neutron scattering and diffraction. They provide useful information both for chemical speciation analysis and structural characterization of metalloproteins and metals in biological systems. Consequently, the book is not only relevant for chemists involved in nuclear techniques and speciation, but also environmental, nutritional and clinical researchers and drug developers. The book includes many illustrations, tables and documents to support the coverage of the latest developments. It also offers a well-organized bibliography to facilitate further reading.
Inorganic Pollutants in Water provides a clear understanding of inorganic pollutants and the challenges they cause in aquatic environments. The book explores the point of source, how they enter water, the effects they have, and their eventual detection and removal. Through a series of case studies, the authors explore the success of the detection and removal techniques they have developed. Users will find this to be a single platform of information on inorganic pollutants that is ideal for researchers, engineers and technologists working in the fields of environmental science, environmental engineering and chemical engineering/ sustainability. Through this text, the authors introduce new researchers to the problem of inorganic contaminants in water, while also presenting the current state-of-the-art in terms of research and technologies to tackle this problem.
Widely employed for separating and detecting chemicals in solution, separation techniques are most often applied in tandem, subsequently referred to as hyphenated methods. Hyphenated and Alternative Methods of Detection in Chromatography details the development and application of mass spectral detection techniques coupled with gas phase and liquid
There is a dramatic rise of novel drug use due to the increased popularity of so-called designer drugs. These synthetic drugs can be illegal in some countries, but legal in others and novel compounds unknown to drug chemistry emerge monthly. This thoughtfully constructed edited reference presents the main chromatographic methodologies and strategies used to discover and analyze novel designer drugs contained in diverse biological materials. The methods are based on molecular characteristics of the drugs belonging to each individual class of compounds, so it will be clear how the current methods are adaptable to future new drugs that appear in the market.
Used routinely in drug control laboratories, forensic laboratories, and as a research tool, thin layer chromatography (TLC) plays an important role in pharmaceutical drug analyses. It requires less complicated or expensive equipment than other techniques, and has the ability to be performed under field conditions. Filling the need for an up-to-date, complete reference, Thin Layer Chromatography in Drug Analysis covers the most important methods in pharmaceutical applications of TLC, namely, analysis of bulk drug material and pharmaceutical formulations, degradation studies, analysis of biological samples, optimization of the separation of drug classes, and lipophilicity estimation. The book is divided into two parts. Part I is devoted to general topics related to TLC in the context of drug analysis, including the chemical basis of TLC, sample pleparation, the optimization of layers and mobile phases, detection and quantification, analysis of ionic compounds, and separation and analysis of chiral substances. The text addresses the newest advances in TLC instrumentation, two-dimensional TLC, quantification by slit scanning densitometry and image analysis, statistical processing of data, and various detection and identification methods. It also describes the use of TLC for solving a key issue in the drug market—the presence of substandard and counterfeit pharmaceutical products. Part II provides an in-depth overview of a wide range of TLC applications for separation and analysis of particular drug groups. Each chapter contains an introduction about the structures and medicinal actions of the described substances and a literature review of their TLC analysis. A useful resource for chromatographers, pharmacists, analytical chemists, students, and R&D, clinical, and forensic laboratories, this book can be utilized as a manual, reference, and teaching source.
HPLC is the principal separation technique for identification of the pesticides in environmental samples and for quantitative analysis of analytes. At each stage of the HPLC procedure, the chromatographer should possess both the practical and theoretical skills required to perform HPLC experiments correctly and to obtain reliable, repeatable, and r