This groundbreaking resource offers you an up-to-date account of the pioneering activity pushing new boundaries in the emerging area of inorganic nanoprobes and their use in biology and medicine. Written and edited by leading experts in the field, this unique book places particular emphasis nanoprobes made of luminescent semiconductor nanocrystals (quantum dots or QDs) and magnetic nanoparticles (MNPs). You find an insightful discussion on the synthesis, characterization, and analysis of the unique properties of luminescent QDs and MNPs.
Nanoparticles have immense commercial importance. Biogenic synthesis of nanoparticle from diverse groups of organisms is of great interest since the methodology is simple and hazard-free. The obtained nanoparticles are free from toxic residues and are bio-compatible. The book offers an overview of various aspects of biological synthesis of the inorganic nanoparticles-gold, silver, platinum, palladium, copper oxide, titanium dioxide nanoparticles, and carbon nanostructures by different biological systems and their suitability for application in various fields especially in biomedicine and environmental protection. The diversity of biomolecules in these bioresources can facilitate biomanufacturing of nanoparticles of suitable size and geometry by regulating reaction parameters. The book also offers an insight into the use of callus cultures which are renewable bio-resources for the axenic synthesis of nanoparticles suitable for therapeutic applications. In several studies the biogenic nanoparticles have been found to be superior to nanoparticles synthesized by conventional methods. Hence studies on the current status of biogenic synthesis of nanoparticles and their applications will facilitate future research to achieve biomanufacturing of nanoparticles for various beneficial uses. It is suitable as a reference book for researchers. It is useful as a textbook for post-graduate and undergraduate students. Each chapter has several questions to stimulate the interest of students. There are also simple laboratory protocols for biogenic synthesis.
Inorganic Frameworks as Smart Nanocarriers for Drug Delivery brings together recent research in the area of inorganic frameworks for drug delivery. Different types of nanocarriers are presented and discussed in detail, providing an up-to-date overview on inorganic nanoparticles with pharmaceutical applications. Written by a diverse range of international academics, this book is a valuable reference resource for researchers in biomaterials, the pharmaceutical industry, and those who want to learn more about the current applications of inorganic smart nanocarriers. - Includes assembly methods for a variety of smart nanocarrier systems, also showing how they are applied - Highlights how metal-oxide nanoparticles are effectively used in drug delivery - Assesses the pros and cons of different metallic nanomaterials as drug carriers
This book presents selected papers from the International Conference on Computing, Communication, Electrical and Biomedical Systems (ICCCEBS 2021), held in March 2021 at KPR College of Engineering and Technology, Coimbatore, Tamil Nadu, India. The conference explores the interface between industry and real-time environments with newly developed techniques in computing and communications engineering. The papers describe results of conceptual, constructive, empirical, experimental, and theoretical work in areas of computing, communication, electrical, and biomedical systems. Contributors include academic scientists, researchers, industry representatives, postdoctoral fellows, and research scholars from around the world.
Nature’s evolution has led to the introduction of highly efficient biological mechanisms. Imitating these mechanisms offers an enormous potential for the improvement of our day to day life. Ideally, by bio-inspiration we can get a better view of nature’s capability while studying its models and adapting it for our benefit. This book takes us into the interesting world of biomimetics and describes various arenas where the technology is applied. The 25 chapters covered in this book disclose recent advances and new ideas in promoting the mechanism and applications of biomimetics.
Nanoparticles are usually designed for specific applications and selection of the most convenient capping can be a complex task, but is crucial for successful design. In this volume, the authors discuss the selection of functional cappings to coat nanoparticles in a range of different applications. The opening chapter provides an understanding of basic aspects of surface chemistry at the nanoscale. Each following chapter covers a particular kind of capping, beginning with a basic introduction and describing characteristics such as structure, functionality, solubility, (photo)physics, and toxicity. Special emphasis is placed on how important these specific features are in the preparation of smart nanomaterials. In-depth explanations and examples are then presented, highlighting the latest results and cutting-edge research carried out with the selected capping according to the kind of nanoparticle employed (such as rare-earth doped, semiconducting, and metallic). An additional chapter focusses on computational techniques for modelling nanosurfaces. Photoactive Inorganic Nanoparticles: Surface Composition and its Role in Nanosystem Functionality will be a valuable working resource for graduate students, researchers, and industry R&D professionals working in the field of applied nanomaterials.
Among the various nanomaterials, inorganic nanoparticles are extremely important in modern technologies. They can be easily and cheaply synthesized and mass produced, and for this reason, they can also be more readily integrated into applications. Inorganic Nanoparticles: Synthesis, Applications, and Perspectives presents an overview of these special materials and explores the myriad ways in which they are used. It addresses a wide range of topics, including: Application of nanoparticles in magnetic storage media Use of metal and oxide nanoparticles to improve performance of oxide thin films as conducting media in commercial gas and vapor sensors Advances in semiconductors for light-emitting devices and other areas related to the energy sector, such as solar energy and energy storage devices (fuel cells, rechargeable batteries, etc.) The expanding role of nanosized particles in the field of catalysis, art conservation, and biomedicine The book’s contributors address the growing global interest in the application of inorganic nanoparticles in various technological sectors. Discussing advances in materials, device fabrication, and large-scale production—all of which are urgently required to reduce global energy demands—they cover innovations in areas such as solid-state lighting, detailing how it still offers higher efficiency but higher costs, compared to conventional lighting. They also address the impact of nanotechnology in the biomedical field, focusing on topics such as quantum dots for bioimaging, nanoparticle-based cancer therapy, drug delivery, antibacterial agents, and more. Fills the informational gap on the wide range of applications for inorganic nanoparticles in areas including biomedicine, electronics, storage media, conservation of cultural heritage, optics, textiles, and cosmetics Assembling work from an array of experts at the top of their respective fields, this book delivers a useful analysis of the vast scope of existing and potential applications for inorganic nanoparticles. Versatile as either a professional research resource or textbook, this effective tool elucidates fundamentals and current advances associated with design, characterization, and application development of this promising and ever-evolving device.
This two-part multivolume set provides a comprehensive overview of current achievements in biomedical applications of nanotechnology, including stem cell based regenerative medicine, medical imaging, cell targeting, drug delivery, and photothermal/photodynamic cancer therapy. New approaches in early cancer diagnosis and treatment are introduced with extensive experimental results. In particular, some novel materials have been synthesized with new properties that are most effective in cancer therapy. Some of the key issues are also addressed with these recent discoveries such as bio safety and bio degradability, that are essential in the success of nano medicine.An important aspect of this book set is the introduction of nanotechnology to the medical communities that are searching for new treatments of cancer. It may also break the barriers between the physical and medical sciences so that more MDs will be able to appreciate the new discoveries and establishments in medical diagnosis and therapy that will allow the effective handling of major clinical issues.This major reference publication will be important as the field of nanomedicine has been rapidly developing with a great deal of new information. It is anticipated that the research will soon advance into the pre-clinical stage. Therefore, this reference set can serve as valuable background information for future clinical studies.
Cancer can affect people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive research is being undertaken by many different institutions to explore potential new therapeutics, and biomaterials technology is now being developed to target, treat and prevent cancer. This unique book discusses the role and potential of biomaterials in treating this prevalent disease.The first part of the book discusses the fundamentals of biomaterials for cancer therapeutics. Chapters in part two discuss synthetic vaccines, proteins and polymers for cancer therapeutics. Part three focusses on theranosis and drug delivery systems, whilst the final set of chapters look at biomaterial therapies and cancer cell interaction.This extensive book provides a complete overview of the latest research into the potential of biomaterials for the diagnosis, therapy and prevention of cancer. Biomaterials for cancer therapeutics is an essential text for academics, scientists and researchers within the biomedical industry, and will also be of interest to clinicians with a research interest in cancer therapies and biomaterials. - A complete overview of the latest research into the potential of biomaterials for the diagnosis, therapy and prevention of cancer - Discusses the fundamentals of biomaterials for cancer therapeutics - Discusses synthetic vaccines, proteins and polymers for cancer therapeutics
Nanoscience in Dermatology covers one of the two fastest growing areas within dermatological science, nanoscience and nanotechnology in dermatology. Recently, great progress has been made in the research and development of nanotechnologies and nanomaterials related to various applications in medicine and, in general, the life sciences. There is increasing enthusiasm for nanotechnology applications in dermatology (drug delivery, diagnostics, therapeutics, imaging, sensors, etc.) for understanding skin biology, improving early detection and treatment of skin diseases, and in the design and optimization of cosmetics. Light sensitive nanoparticles have recently been explored, opening a new era for the combined applications of light with nanotechnology, also called photonanodermatology. However, concerns have been raised regarding the adverse effects of intentional and unintentional nanoparticle exposure and their toxicity. Written by experts working in these exciting fields, this book extensively covers nanotechnology applications, together with the fundamentals and toxicity aspects. It not only addresses current applications of nanotechnology, but also discusses future trends of these ever-growing and rapidly changing fields, providing scientists and dermatologists with a clear understanding of the advantages and challenges of nanotechnology in skin medicine. - Provides knowledge of current and future applications of nanoscience and nanotechnology in dermatology - Outlines the fundamentals, methods, toxicity aspects, and other relevant aspects for nanotechnology based applications in dermatology - Coherently structured book written by experts working in the fields covered