Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.
This compact handbook describes all the important methods of synthesis employed today for synthesizing inorganic materials. Some features: Focuses on modern inorganic materials with applications in nanotechnology, energy materials, and sustainability Synthesis is a crucial component of materials science and technology; this book provides a simple introduction as well as an updated description of methods Written in a very simple style, providing references to the literature to get details of the methods of preparation when required
Guiding readers from the significance, history, and sources of materials to advanced materials and processes, this second edition textbook looks at the production and primary processing of inorganic materials, such as ceramics, metals, silicon, and some composite materials. The text encourages instructors to teach the production of all types of inorganic materials as one. While recognizing the differences between producing various types of materials, the authors focus on the commonality of thermodynamics, kinetics, transport phenomena, phase equilibria and transformation, process engineering, and surface chemistry to all inorganic materials. The text focuses on fundamentals and how fundamentals can be applied to understand how the major inorganic materials are produced and the initial stages of their processing. Understanding of these fundamentals will equip students for engineering future processes for producing materials or for studying the processing of the many less common materials not examined in this text. The text is intended for use in an undergraduate course at the junior or senior level, but will also serve as a useful introductory and reference work for graduate students and practicing scientists and engineers.
A unique interdisciplinary approach to inorganic materialsdesign Textbooks intended for the training of chemists in the inorganicmaterials field often omit many relevant topics. With itsinterdisciplinary approach, this book fills that gap by presentingconcepts from chemistry, physics, materials science, metallurgy,and ceramics in a unified treatment targeted towards the chemistryaudience. Semiconductors, metal alloys and intermetallics, as wellas ceramic substances are covered. Accordingly, the book shouldalso be useful to students and working professionals in a varietyof other disciplines. This book discusses a number of topics that are pertinent to thedesign of new inorganic materials but are typically not covered instandard solid-state chemistry books. The authors start with anintroduction to structure at the mesoscopic level and progress tosmaller-length scales. Next, detailed consideration is given toboth phenomenological and atomistic-level descriptions of transportproperties, the metal-nonmetal transition, magnetic and dielectricproperties, optical properties, and mechanical properties. Finally,the authors present introductions to phase equilibria, synthesis,and nanomaterials. Other features include: * Worked examples demonstrating concepts unfamiliar to thechemist * Extensive references to related literature, leading readers tomore in-depth coverage of particular topics * Biographies introducing the reader to great contributors to thefield of inorganic materials science in the twentieth century With their interdisciplinary approach, the authors have set thegroundwork for communication and understanding among professionalsin varied disciplines who are involved with inorganic materialsengineering. Armed with this publication, students and researchersin inorganic and physical chemistry, physics, materials science,and engineering will be better equipped to face today's complexdesign challenges. This textbook is appropriate for senior-levelundergraduate and graduate course work.
This up-to-date, single-source reference on the preparation of single-phase inorganic materials covers the most important methods and techniques in solid-state synthesis and materials fabrication. Presenting both fundamental background and advanced methodologies, it describes the principles of crystallography, thermodynamics, and kinetics required, addresses crystallographic and microstructural considerations, and describes various kinds of reactions. This is an excellent text for materials science and engineering, chemistry, and physics students, as well as a practical, hands-on reference for working professionals.
This book describes a series of research topics investigated during the 6 years from 2010 through 2015 in the project "Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials". Every section of the book is aimed at understanding the most advanced research by describing details starting with the fundamentals as often as possible. Because both fundamental and cutting-edge topics are contained in this book, it provides a great deal of useful information for chemists as well as for materials scientists and engineers who wish to consider future prospects and innovations. The contents of Novel Structured Metallic and Inorganic Materials are unique in materials science and technology. The project was carried out through the cooperation of research groups in the following six institutes in Japan: the Institute for Materials Research (IMR), Tohoku University; the Materials and Structures Laboratory (MSL), Tokyo Institute of Technology; the Joining and Welding Research Institute (JWRI), Osaka University; the Eco-Topia Science Institute (EST), Nagoya University; the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University; and the Institute for Nanoscience and Nanotechnology (INN), Waseda University. Major objectives of the project included creation of advanced metallic and inorganic materials with a novel structure, as well as development of materials-joining technologies for development of cutting-edge applications as environmental and energy materials, biomedical materials, and electronic materials for contributing to the creation of a safer and more secure society.
Introduces readers to the field of inorganic materials, while emphasizing synthesis and modification techniques Written from the chemist's point of view, this newly updated and completely revised fourth edition of Synthesis of Inorganic Materials provides a thorough and pedagogical introduction to the exciting and fast developing field of inorganic materials and features all of the latest developments. New to this edition is a chapter on self-assembly and self-organization, as well as all-new content on: demixing of glasses, non-classical crystallization, precursor chemistry, citrate-gel and Pechini liquid mix methods, ice-templating, and materials with hierarchical porosity. Synthesis of Inorganic Materials, 4th Edition features chapters covering: solid-state reactions; formation of solids from the gas phase; formation of solids from solutions and melts; preparation and modification of inorganic polymers; self-assembly and self-organization; templated materials; and nanostructured materials. There is also an extensive glossary to help bridge the gap between chemistry, solid state physics and materials science. In addition, a selection of books and review articles is provided at the end of each chapter as a starting point for more in-depth reading. -Gives the students a thorough overview of the fundamentals and the wide variety of different inorganic materials with applications in research as well as in industry -Every chapter is updated with new content -Includes a completely new chapter covering self-assembly and self-organization -Written by well-known and experienced authors who follow an intuitive and pedagogical approach Synthesis of Inorganic Materials, 4th Edition is a valuable resource for advanced undergraduate students as well as masters and graduate students of inorganic chemistry and materials science.
Although the chemistry of solid inorganic materials has become increasingly central to chemistry research, the subject has long been inadequately covered. This well-illustrated primer fills the gap with a comprehensive introduction to the subject.
Discover the materials set to revolutionize the electronics industry The search for electronic materials that can be cheaply solution-processed into films, while simultaneously providing quality device characteristics, represents a major challenge for materials scientists. Continuous semiconducting thin films with large carrier mobilities are particularly desirable for high-speed microelectronic applications, potentially providing new opportunities for the development of low-cost, large-area, flexible computing devices, displays, sensors, and solar cells. To date, the majority of solution-processing research has focused on molecular and polymeric organic films. In contrast, this book reviews recent achievements in the search for solution-processed inorganic semiconductors and other critical electronic components. These components offer the potential for better performance and more robust thermal and mechanical stability than comparable organic-based systems. Solution Processing of Inorganic Materials covers everything from the more traditional fields of sol-gel processing and chemical bath deposition to the cutting-edge use of nanomaterials in thin-film deposition. In particular, the book focuses on materials and techniques that are compatible with high-throughput, low-cost, and low-temperature deposition processes such as spin coating, dip coating, printing, and stamping. Throughout the text, illustrations and examples of applications are provided to help the reader fully appreciate the concepts and opportunities involved in this exciting field. In addition to presenting the state-of-the-art research, the book offers extensive background material. As a result, any researcher involved or interested in electronic device fabrication can turn to this book to become fully versed in the solution-processed inorganic materials that are set to revolutionize the electronics industry.
P.J. van der Put offers students an original introduction to materials chemistry that integrates the full range of inorganic chemistry. Technologists who need specific chemical facts to manipulate matter will also find this work invaluable as an easy-to-use reference. The text includes practical subjects of immediate use for materials such as bonding, morphogenesis, and design that more orthodox materials science volumes often leave out.