This is a textbook for advanced undergraduate inorganic chemistry courses, covering elementary inorganic reaction chemistry through to more advanced inorganic theories and topics. The approach integrates bioinorganic, environmental, geological and medicinal material into each chapter, and there is a refreshing empirical approach to problems in which the text emphasizes observations before moving onto theoretical models. There are worked examples and solutions in each chapter combined with chapter-ending study objectives, 40-70 exercises per chapter and experiments for discovery-based learning.
It is a basic law of chemistry that pressure influences reactions. Thus, high-pressure reactions are no longer a rarity in chemistry today, but rather are indispensable tools - whether for innovative syntheses, new products or for explaining reaction mechanisms. The expert editors, Rudi van Eldik and Frank-Gerrit Klärner, provide a comprehensive overview of this fascinating field, ranging from the influence of high pressure on organic and inorganic reactions, via concrete applications in synthesis for metal catalytic and stereoselective processes right up to the use of supercritical liquids. Written by renowned experts, this volume contains a wealth of vital and practical information, for both newcomers to the field as well as experienced high-pressure chemists. Whether in academia or industry, this book belongs on the shelf of every chemist concerned with high-pressure chemistry either now or in the future.
Physical Inorganic Chemistry contains the fundamentals of physical inorganic chemistry, including information on reaction types, and treatments of reaction mechanisms. Additionally, the text explores complex reactions and processes in terms of energy, environment, and health. This valuable resource closely examines mechanisms, an under-discussed topic. Divided into two sections, researchers, professors, and students will find the wide range of topics, including the most cutting edge topics in chemistry, like the future of solar energy, catalysis, environmental issues, climate changes atmosphere, and human health, essential to understanding chemistry.
Water interacts with metal ions in a variety of contexts: from aqueous solutions of inorganic salts to enzymatic catalysis. The investigation of water-metal ion interactions is conveniently performed through water 1H NMR at different magnetic field-a technique known as relaxometry. Advances in Inorganic Chemistry, Volume 57 focuses on relaxometry of water-metal ion interactions.Contributions by leading experts in the field cover important advances in inorganic and bioinorganic chemistry; another welcomed addition to the widely acclaimed series, Advances in Inorganic Chemistry. * Includes new information on the important advances in inorganic and bioinorganic chemistry * Each chapter is fully referenced * Contains comprehensive reviews written by leading experts in the field
The very best and latest advances compiled in a single volume-an ideal resource for graduate students and researchers . . . Here is the perfect introduction to chemistry under extreme or non-classical conditions, including use of high temperature species, high pressure, supercritical media, sonochemistry, and microwave chemistry. Written by leading experts in their respective fields, this unique text applies a unified approach to each method, including background, instrumentation, examples, information on industrial applications (where relevant), and sources for further reading. Featured topics: * Chemical Synthesis Using High Temperature Species * Effect of Pressure on Inorganic Reactions * Effect of Pressure on Organic Reactions * Organic Synthesis at High Pressure * Inorganic and Related Chemical Reactions in Supercritical Fluids * Organic Chemistry in Supercritical Fluids * Industrial and Environmental Applications of Supercritical Fluids * Ultrasound as a New Tool for Synthetic Chemists * Applications of High Intensity Ultrasound in Polymer Chemistry * Chemistry Under Extreme Conditions in Water Induced Electrohydraulic Cavitation and Pulsed-Plasma Discharges * Microwave Dielectric Heating Effects in Chemical Synthesis * Biomolecules Under Extreme Conditions
Comprehensive Inorganic Chemistry II, Nine Volume Set reviews and examines topics of relevance to today’s inorganic chemists. Covering more interdisciplinary and high impact areas, Comprehensive Inorganic Chemistry II includes biological inorganic chemistry, solid state chemistry, materials chemistry, and nanoscience. The work is designed to follow on, with a different viewpoint and format, from our 1973 work, Comprehensive Inorganic Chemistry, edited by Bailar, Emeléus, Nyholm, and Trotman-Dickenson, which has received over 2,000 citations. The new work will also complement other recent Elsevier works in this area, Comprehensive Coordination Chemistry and Comprehensive Organometallic Chemistry, to form a trio of works covering the whole of modern inorganic chemistry. Chapters are designed to provide a valuable, long-standing scientific resource for both advanced students new to an area and researchers who need further background or answers to a particular problem on the elements, their compounds, or applications. Chapters are written by teams of leading experts, under the guidance of the Volume Editors and the Editors-in-Chief. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource for information in the field. The chapters will not provide basic data on the elements, which is available from many sources (and the original work), but instead concentrate on applications of the elements and their compounds. Provides a comprehensive review which serves to put many advances in perspective and allows the reader to make connections to related fields, such as: biological inorganic chemistry, materials chemistry, solid state chemistry and nanoscience Inorganic chemistry is rapidly developing, which brings about the need for a reference resource such as this that summarise recent developments and simultaneously provide background information Forms the new definitive source for researchers interested in elements and their applications; completely replacing the highly cited first edition, which published in 1973
The contributors to this book discuss inorganic synthesis reactions, dealing with inorganic synthesis and preparative chemistry under specific conditions. They go on to describe the synthesis, preparation and assembly of six important categories of compounds with wide coverage of distinct synthetic chemistry systems
Inorganic and Bio-Inorganic Chemistry is the component of Encyclopedia of Chemical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Inorganic and Bio-Inorganic Chemistry in the Encyclopedia of Chemical Sciences, Engineering and Technology Resources deals with the discipline which studies the chemistry of the elements of the periodic table. It covers the following topics: From simple to complex compounds; Chemistry of metals; Inorganic synthesis; Radicals reactions with metal complexes in aqueous solutions; Magnetic and optical properties; Inorganometallic chemistry; High temperature materials and solid state chemistry; Inorganic biochemistry; Inorganic reaction mechanisms;Homogeneous and heterogeneous catalysis; Cluster and polynuclear compounds; Structure and bonding in inorganic chemistry; Synthesis and spectroscopy of transition metal complexes; Nanosystems;Computational inorganic chemistry; Energy and inorganic chemistry. These two volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs
Advances in Physical Organic Chemistry provides the chemical community with authoritative and critical assessments of the many aspects of physical organic chemistry. The field is a rapidly developing one, with results and methodologies finding application from biology to solid state physics. Reviews the application of quantitative and mathematical methods towards understanding chemical problems Multidisciplinary volumes cover organic, organometallic, bioorganic, enzymes and materials topics