Inorganic Biomaterials

Inorganic Biomaterials

Author: Xiang C Zhang

Publisher: Smithers Rapra

Published: 2014-06-26

Total Pages: 256

ISBN-13: 1909030414

DOWNLOAD EBOOK

This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a new concept on mechanical compatibility - 'mechacompatibility'. Almost all implant biomaterials employed to date, such as metal and ceramic implants, do not meet this biological requirement as they have far higher modulus than any biomaterials in the body. The practical techniques that are used in the characterization of biomaterials, including chemical, physical, biological, microscopy and mechanical characterization are described. Some specialised techniques are also introduced such as Synchrotron Micro-Computed Tomography (u-CT) and Magnetic Resonance Imaging (MRI). The reader is given important information on new biomaterials development for orthopaedic and other areas, including controlled release technology, hydroxyapatite and hybrid bioresorbable materials. Finally the book provides a guide to regulatory considerations, an area which is often overlooked, but is an important part of R&D and manufacturing of medical materials and devices.


Inorganic Biomaterials

Inorganic Biomaterials

Author: Wolfram Höland

Publisher: Frontiers Media SA

Published: 2016-04-04

Total Pages: 119

ISBN-13: 2889198014

DOWNLOAD EBOOK

Inorganic biomaterials include materials for e.g. dental restorations, biocompatible materials for orthopedic appliances and bioactive materials. However, inorganic biomaterials are also developed for use in tissue regeneration, e.g. wound healing. These products either consist of crystalline phases, such as Al2O3 or ZrO2, which makes them suitable for use in hip bone replacement or they are composed of tricalcium phosphate and used as resorbable biomaterials. Or, they contain glassy phases, such as BIOGLASS®, and are employed as bioactive biomaterials to bond to living bone. Inorganic biomaterials are also used to develop inorganic – organic composites which are suitable for use as bioactive products or to produce dental filling materials. In general, the development of composites is state of the art. However, it is also a future technology. Biomaterials for dental restorations consist of glassy or crystalline phases. Glass-ceramics represent a special group of inorganic biomaterials for dental restorations. Glass-ceramics are composed of at least one inorganic glassy phase and at least one crystalline phase. These products demonstrate a combination of properties, which include excellent aesthetics and the ability to mimic the optical properties of natural teeth, as well as high strength and toughness. They can be processed using special processing procedures, e.g. machining, moulding and sintering, to fabricate high quality products. Sintered oxide ceramics, such as Al2O3 or ZrO2, are also used for the fabrication of dental restorations. These products can be veneered with other biomaterials, or they can be polished to achieve the best possible surface quality. The manuscripts dealing with inorganic biomaterials should focus on the development of the products, especially on their chemical nature, the phase formation processes and all the details related to their processing. Very important are the mechanisms of phase formation. The reader of the manuscript should understand all of these reactions in detail. As far as application is concerned, it is important to describe the main properties of the developed products based on the valid standards, e.g. the ISO standards. The papers published should show that the products comply with these standards. It is very important to understand the relationship between biomass and biomaterials. This will help young scientists to follow the development of biomaterials with new, unexpected properties. He manuscripts published in "Frontiers" should also focus on the application of the biomaterials. Every manuscript should show the most important application of the material presented. There are different journals that deal with specific product categories, eg "Dental Materials". However, "Frontiers" should allow young scientists to publish their research results using all kinds of inorganic biomaterials. On the other hand, fundamental discussion and analysis of the findings should be encouraged and conclusions about possible applications in the field of medicine and dentistry should be drawn.


The Chemistry of Inorganic Biomaterials

The Chemistry of Inorganic Biomaterials

Author: Christopher Spicer

Publisher: Royal Society of Chemistry

Published: 2021-08-18

Total Pages: 323

ISBN-13: 1788017536

DOWNLOAD EBOOK

This book overviews the underlying chemistry behind the most common and cutting-edge inorganic materials in current use, or approaching use, in vivo.


Cellular Response to Biomaterials

Cellular Response to Biomaterials

Author: Lucy Di Silvio

Publisher: Elsevier

Published: 2008-12-22

Total Pages: 649

ISBN-13: 184569547X

DOWNLOAD EBOOK

The response of cells to biomaterials is critical in medical devices. Traditionally inert biomaterials were used to minimise the reaction in cells in contact with the material. However, it has been realised that specific cell responses may be beneficial in such areas as encouraging adhesion, healing or cell multiplication. Cellular response to biomaterials discusses the response of cells to a wide range of biomaterials targeted at specific medical applications.Part one discusses cell responses to a variety of polymers and ceramics with chapters on such topics as degradable polymers and biocompatibility. Part two covers cell responses and regenerative medicine with coverage of themes such as vascular grafts, nerve repair and Bioglass®. Part three examines the effect of surfaces and proteins on cell response. Specific chapters review nano-engineered surfaces, the influence of plasma proteins on bone cell adhesion and surface modification of titanium implants.With its distinguished editor and team of international contributors, Cellular response to biomaterials is an essential read for those researching or studying medical devices in industry and academia. - Examines the response of cells to a wide range of biomaterials targeted at specific medical applications - Discusses cell responses and regenerative medicine with specific chapters on vascular grafts and nerve repair - Assesses the effect of surfaces and proteins on cell response including the influence of plasma proteins on cell adhesion and surface modification of titanium implants


Biomaterials Science and Implants

Biomaterials Science and Implants

Author: Bikramjit Basu

Publisher: Springer Nature

Published: 2020-10-22

Total Pages: 215

ISBN-13: 9811569185

DOWNLOAD EBOOK

Biomaterials as a research theme is highly socially relevant with impactful applications in human healthcare. In this context, this book provides a state-of-the-art perspective on biomaterials research in India and globally. It presents a sketch of the Indian landscape against the backdrop of the international developments in biomaterials research. Furthermore, this book presents highlights from major global institutes of importance, and challenges and recommendations for bringing inventions from the bench to the bedside. It also presents valuable information to those interested in existing issues pertaining to developing the biomaterials research ecosystem in developing countries. The contents also serve to inspire and educate young researchers and students to take up research challenges in the areas of biomaterials, biomedical implants, and regenerative medicine. With key recommendations for developing frontier research and policy, it also speaks to science administrators, policymakers, industry experts, and entrepreneurs on helping shape the future of biomaterials research and development.


Biomaterials for Photocatalysis

Biomaterials for Photocatalysis

Author: Rafael Luque

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2023-10-02

Total Pages: 204

ISBN-13: 3110768836

DOWNLOAD EBOOK

Biomaterials are advanced materials that garner interdisciplinary research. Wastewater pollution causes many adverse effects on human health and the environment. In order to rectify this, biomaterials and other nanomaterials have been utilized as photocatalysts against environmental waste. In this book, biomaterials are highlighted as a promising material for waste management, as biomaterials are cost-effective, eco-friendly and closer to nature.


Novel Biomaterials for Tissue Engineering

Novel Biomaterials for Tissue Engineering

Author:

Publisher: BoD – Books on Demand

Published: 2024-06-05

Total Pages: 188

ISBN-13: 1837692289

DOWNLOAD EBOOK

This book offers a comprehensive and up-to-date overview of the progress and innovations in the field of novel biomaterials applied in tissue engineering. It focuses on the development, characterization, and application of a wide range of advanced biomaterials, from biodegradable metallic alloys to hydroxyapatite composites and nanofiber technologies, with a special emphasis on enhancing tissue regeneration and wound healing. These aspects may be of interest to decision-makers in health and technology, providing vision into future research directions and the potential impact on patient care.


Surface Engineering of Biomaterials

Surface Engineering of Biomaterials

Author: Ajit Behera

Publisher: CRC Press

Published: 2024-03-20

Total Pages: 641

ISBN-13: 1003848346

DOWNLOAD EBOOK

Surface engineering provides one of the most important means of engineering product differentiation in terms of quality, performance, and lifecycle cost. It is essential to achieve predetermined functional properties of materials such as mechanical strength, biocompatibility, corrosion resistance, wear resistance, and heat and oxidation resistance. Surface Engineering of Biomaterials addresses this topic across a diverse range of process technologies and healthcare applications. Introduces biomaterial surface science and surface engineering and includes criteria for biomaterial surface selection Focuses on a broad array of materials including metals, ceramics, polymers, alloys, and composites Discusses corrosion, degradation, and material release issues in implant materials Covers various processing routes to develop biomaterial surfaces, including for smart and energy applications Details techniques for post-modification of biomaterial surfaces This reference work helps researchers working at the intersection of materials science and biotechnology to engineer functional biomaterials for a variety of applications.


Structural Biomaterials

Structural Biomaterials

Author: Cuie Wen

Publisher: Woodhead Publishing

Published: 2021-04-06

Total Pages: 464

ISBN-13: 0128188324

DOWNLOAD EBOOK

Structural Biomaterials: Properties, Characteristics, and Selection serves as a single point of reference to digest current research and develop a deeper understanding in the field of biomaterials engineering. This book uses a materials-focused approach, allowing the reader to quickly access specific, detailed information on biomaterials characterization and selection. Relevant to a range of readers, this book provides holistic coverage of the broad categories of structural biomaterials currently available and used in medical applications, highlighting the property requirements for structural biomaterials, their biocompatibility performance and their safety regulation in key categories such as metals, ceramics and polymers. The materials science perspective of this text ensures the content is accessible even to those without an extensive background in applied medicine, positioning this text not just for students, but as an overview and reference for researchers, scientists and engineers entering the field from related materials science disciplines. - Provides a unique, holistic approach, covering key biomaterials categories in one text, including metals, ceramics and polymers - Discusses advantages, disadvantages, biocompatibility performance and safety regulations, allowing for accurate materials selection in medical applications - Utilizes a materials science perspective, allowing those without an extensive applied medical background to learn about the field


Fundamental Biomaterials: Polymers

Fundamental Biomaterials: Polymers

Author: Sabu Thomas

Publisher: Woodhead Publishing

Published: 2018-03-20

Total Pages: 354

ISBN-13: 008102195X

DOWNLOAD EBOOK

Fundamental Biomaterials: Polymers provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices. Chapters analyze the types of polymers and discuss a range of biomedical applications. It is the first title in a three volume set, with each reviewing the most important and commonly used classes of biomaterials and providing comprehensive information on classification, materials properties, behavior, biocompatibility and applications. The book concludes with essential information on wear, lifetime prediction and cytotoxicity of biomaterials. This title will be of use to researchers and professionals in development stages, but will also help medical researchers understand and effectively communicate the requirements of a biomaterial for a specific application. Further, with the recent introduction of a number of interdisciplinary bio-related undergraduate and graduate programs, this book will be an appropriate reference volume for large number of students at undergraduate and post graduate levels. - Provides current information on findings and developments of biopolymers and their conversion from base materials to medical devices - Includes analyses of the types of polymers and a discussion of a range of biomedical applications - Presents essential information on wear, lifetime prediction and cytotoxicity of biomaterials - Explores both theoretical and practical aspects of polymers in biomaterials