This book brings together important new contributions covering electric vehicle smart charging (EVSC) from a multidisciplinary group of global experts, providing a comprehensive look at EVSC and its role in meeting long-term goals for decarbonization of electricity generation and transportation. This multidisciplinary reference presents practical aspects and approaches to the technology, along with evidence from its applications to real-world energy systems. Electric Vehicle Integration via Smart Charging is suitable for practitioners and industry stakeholders working on EVSC, as well as researchers and developers from different branches of engineering, energy, transportation, economic, and operation research fields.
SMART CHARGING SOLUTIONS The most comprehensive and up-to-date study of smart charging solutions for hybrid and electric vehicles for engineers, scientists, students, and other professionals. As our dependence on fossil fuels continues to wane all over the world, demand for dependable and economically feasible energy sources continues to grow. As environmental regulations become more stringent, energy production is relying more and more heavily on locally available renewable resources. Furthermore, fuel consumption and emissions are facilitating the transition to sustainable transportation. The market for electric vehicles (EVs) has been increasing steadily over the past few years throughout the world. With the increasing popularity of EVs, a competitive market between charging stations (CSS) to attract more EVs is expected. This outstanding new volume is a resource for engineers, researchers, and practitioners interested in getting acquainted with smart charging for electric vehicles technologies. It includes many chapters dealing with the state-of-the-art studies on EV smart charging along with charging infrastructure. Whether for the veteran engineer or student, this is a must-have volume for any library. Smart Charging Solutions for Hybrid and Electric Vehicles: Presents the state of the art of smart charging for hybrid and electric vehicles, from a technological point of view Focuses on optimization and prospective solutions for practical problems Covers the most important recent developmental technologies related to renewable energy, to keep the engineer up to date and well informed Includes economic considerations, such as business models and price structures Covers standards and regulatory frameworks for smart charging solutions
Developments in data acquisition technologies, digital information and analysis, automated construction processes, and advanced materials and products have finally started to move the construction industry - traditionally reluctant to innovation and slow in adopting new technologies - toward a new era. Massive changes are occurring because of the possibilities created by Building information modeling, Extended reality, Internet of Things, Artificial intelligence and Machine Learning, Big data, Nanotechnology, 3D printing, and other advanced technologies, which are strongly interconnected and are driving the capabilities for much more efficient construction at scale. Construction 4.0: Advanced Technology, Tools and Materials for the Digital Transformation of the Construction Industry provides readers with a state-of-the-art review of the ongoing digital transformation of the sector within the new 4.0 framework, presenting a thorough investigation of the emerging trends, technologies, and strategies in the fields of smart building design, construction, and operation and providing a comprehensive guideline on how to exploit the new possibilities offered by the digital revolution. It will be an essential reference resource for academic researchers, material scientists and civil engineers, undergraduate and graduate students, and other professionals working in the field of smart ecoefficient construction and cutting-edge technologies applied to construction. - Provides an overview of the Construction 4.0 framework to address the global challenges of the buildingsector in the 21st century and an in-depth analysis of the most advanced digital technologies and systems forthe operation and maintenance of infrastructure, real estate, and other built assets - Covers major innovations across the value chain, including building design, fabrication, construction, operationand maintenance, and end-of-life - Illustrates the most advanced digital tools and methods to support the building design activity, includinggenerative design, virtual reality, and digital fabrication - Presents a thorough review of the most advanced construction materials, building methods, and techniquesfor a new connected and automated construction model - Explores the digital transformation for smart energy buildings and their integration with emerging smartgrids and smart cities - Reflects upon major findings and identifies emerging market opportunities for the whole AECO sector
This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2020) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Maisammaguda, Hyderabad, India, during August 21-22, 2020. It covers topics in the areas of automation, manufacturing technology and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy and energy sustainability.
Transportation-related challenges exist all over the world, with all countries struggling to develop efficient, effective and user-friendly transportation systems. Today, policy agencies and financing institutions are keen to invest heavily for a potentially good transport systems, as good mobility is pertinent to social growth and a sustainable environment. Intelligent Transportation Systems (ITS) have become a global area of growth in recent times because of increasing demand for mobility, rampant urbanization, and depleting energy reserves. Existing conventional transport infrastructure fails to meet the ever-increasing demand; building additional transportation infrastructure is cumbersome, as it is time-consuming and capital-intensive and available land space is very limited. Therefore, there is a pressing need for innovative and locally relevant systems that can be built rapidly with less investment by leveraging advances in technology. Good ITS enable informed decision-making for all stakeholders. This book presents the ingredients of good ITS, not from a technology perspective, but from a business administration, management, and policy perspective. The emphasis is on practice-oriented, impactful and context relevant systems. Short, real-life case studies are presented for each topic, to keep the discerning transportation enthusiast engaged.
This 2-volume book highlights cutting-edge ecodesign research and covers broad areas ranging from individual product and service design to social system design. It includes business and policy design, circular production, life cycle design and management, digitalization for sustainable manufacturing, user behavior and health, ecodesign of social infrastructure, sustainability education, sustainability indicators, and energy system design. Featuring selected papers presented at EcoDesign 2021: 12th International Symposium on Environmentally Conscious Design and Inverse Manufacturing, it also includes diverse, interdisciplinary approaches to foster ecodesign research and activities. In the context of Sustainable Development Goals (SDGs), in particular SDG 12 (Responsible Consumption and Production), it addresses design innovations for sustainable value creation, considering technological developments, legislation, and consumer lifestyles. Further, the book discusses the concept of circular economy, which aims to develop circular business models for resource efficient society by taking advantage of digital technologies including artificial intelligence, internet of things, digital twin, data analysis and simulation. Written by experts from academia and industry, Volume 1 highlights sustainable design such as product and process design, collaborative design, sustainable innovation, digital technologies, design methodology for sustainability, and energy system design. The methods, tools, and practices described are useful for readers to facilitate value creation for sustainability.
As more and more communities around the world are turning to electric vehicles (EVs) to help the environment and save energy, we face a big challenge. The systems that deliver power to our homes and businesses are having a tough time keeping up, especially with the increasing use of EVs. This challenge is a major issue for the experts in the energy field who are working hard to figure out how to make sure our power systems stay reliable. The main goal for these experts right now is to create a strong, flexible system that can smoothly handle the integration of EVs, making sure the power flows well, the grid stays stable, and the systems remain eco-friendly. E-Mobility in Electrical Energy Systems for Sustainability is a comprehensive guide to navigating the complexities of e-mobility integration. Delving into crucial aspects such as architectural reconfiguration, restoration strategies, power quality control, and regulatory frameworks, the book provides solutions on how to address the challenges posed by the integration of EVs into distribution systems. Its examination of advanced technologies, including communication-enabled EV charging systems, battery management systems, and power grid cybersecurity measures, equips readers with the knowledge needed to start the transformative journey towards sustainable electric transportation. This book is a great resource for those seeking to understand, engage with, and contribute to the landscape of e-mobility integration.