Inkjet Technology for Digital Fabrication

Inkjet Technology for Digital Fabrication

Author: Ian M. Hutchings

Publisher: John Wiley & Sons

Published: 2012-11-09

Total Pages: 417

ISBN-13: 1118452933

DOWNLOAD EBOOK

Whilst inkjet technology is well-established on home and small office desktops and is now having increasing impact in commercial printing, it can also be used to deposit materials other than ink as individual droplets at a microscopic scale. This allows metals, ceramics, polymers and biological materials (including living cells) to be patterned on to substrates under precise digital control. This approach offers huge potential advantages for manufacturing, since inkjet methods can be used to generate structures and functions which cannot be attained in other ways. Beginning with an overview of the fundamentals, this bookcovers the key components, for example piezoelectric print-heads and fluids for inkjet printing, and the processes involved. It goes on to describe specific applications, e.g. MEMS, printed circuits, active and passive electronics, biopolymers and living cells, and additive manufacturing. Detailed case studies are included on flat-panel OLED displays, RFID (radio-frequency identification) manufacturing and tissue engineering, while a comprehensive examination of the current technologies and future directions of inkjet technology completes the coverage. With contributions from both academic researchers and leading names in the industry, Inkjet Technology for Digital Fabrication is a comprehensive resource for technical development engineers, researchers and students in inkjet technology and system development, and will also appeal to researchers in chemistry, physics, engineering, materials science and electronics.


Handbook of Industrial Inkjet Printing

Handbook of Industrial Inkjet Printing

Author: Werner Zapka

Publisher: John Wiley & Sons

Published: 2018-01-03

Total Pages: 946

ISBN-13: 3527338322

DOWNLOAD EBOOK

Unique in its integration of individual topics to achieve a full-system approach, this book addresses all the aspects essential for industrial inkjet printing. After an introduction listing the industrial printing techniques available, the text goes on to discuss individual topics, such as ink, printheads and substrates, followed by metrology techniques that are required for reliable systems. Three iteration cycles are then described, including the adaptation of the ink to the printhead, the optimization of the ink to the substrate and the integration of machine manufacturing, monitoring, and data handling, among others. Finally, the book summarizes a number of case studies and success stories from selected areas, including graphics, printed electronics, and 3D printing as well a list of ink suppliers, printhead manufacturers and integrators. Practical hints are included throughout for a direct hands-on experience. Invaluable for industrial users and academics, whether ink developers or mechanical engineers, and working in areas ranging from metrology to intellectual property.


An Introduction to Microelectromechanical Systems Engineering

An Introduction to Microelectromechanical Systems Engineering

Author: Nadim Maluf

Publisher: Artech House

Published: 2004

Total Pages: 312

ISBN-13: 9781580535915

DOWNLOAD EBOOK

Bringing you up-to-date with the latest developments in MEMS technology, this major revision of the best-selling An Introduction to Microelectromechanical Systems Engineering offers you a current understanding of this cutting-edge technology. You gain practical knowledge of MEMS materials, design, and manufacturing, and learn how it is being applied in industrial, optical, medical and electronic markets. The second edition features brand new sections on RF MEMS, photo MEMS, micromachining on materials other than silicon, reliability analysis, plus an expanded reference list. With an emphasis on commercialized products, this unique resource helps you determine whether your application can benefit from a MEMS solution, understand how other applications and companies have benefited from MEMS, and select and define a manufacturable MEMS process for your application. You discover how to use MEMS technology to enable new functionality, improve performance, and reduce size and cost. The book teaches you the capabilities and limitations of MEMS devices and processes, and helps you communicate the relative merits of MEMS to your company's management. From critical discussions on design operation and process fabrication of devices and systems, to a thorough explanation of MEMS packaging, this easy-to-understand book clearly explains the basics of MEMS engineering, making it an invaluable reference for your work in the field.


Inkjet-based Micromanufacturing

Inkjet-based Micromanufacturing

Author: Oliver Brand

Publisher: John Wiley & Sons

Published: 2012-04-16

Total Pages: 388

ISBN-13: 3527647112

DOWNLOAD EBOOK

Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS


Nanomaterials for 2D and 3D Printing

Nanomaterials for 2D and 3D Printing

Author: Shlomo Magdassi

Publisher: John Wiley & Sons

Published: 2017-06-06

Total Pages: 388

ISBN-13: 3527338195

DOWNLOAD EBOOK

The first book to paint a complete picture of the challenges of processing functional nanomaterials for printed electronics devices, and additive manufacturing fabrication processes. Following an introduction to printed electronics, the book focuses on various functional nanomaterials available, including conducting, semi-conducting, dielectric, polymeric, ceramic and tailored nanomaterials. Subsequent sections cover the preparation and characterization of such materials along with their formulation and preparation as inkjet inks, as well as a selection of applications. These include printed interconnects, passive and active modules, as well as such high-tech devices as solar cells, transparent electrodes, displays, touch screens, sensors, RFID tags and 3D objects. The book concludes with a look at the future for printed nanomaterials. For all those working in the field of printed electronics, from entrants to specialized researchers, in a number of disciplines ranging from chemistry and materials science to engineering and manufacturing, in both academia and industry.


Principles of Microelectromechanical Systems

Principles of Microelectromechanical Systems

Author: Ki Bang Lee

Publisher: John Wiley & Sons

Published: 2011-03-21

Total Pages: 552

ISBN-13: 111810224X

DOWNLOAD EBOOK

The building blocks of MEMS design through closed-form solutions Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles of MEMS via a unified approach and closed-form solutions to micromechanical problems, which have been recently developed by the author and go beyond what is available in other texts. The closed-form solutions allow the reader to easily understand the linear and nonlinear behaviors of MEMS and their design applications. Beginning with an overview of MEMS, the opening chapter also presents dimensional analysis that provides basic dimensionless parameters existing in large- and small-scale worlds. The book then explains microfabrication, which presents knowledge on the common fabrication process to design realistic MEMS. From there, coverage includes: Statics/force and moment acting on mechanical structures in static equilibrium Static behaviors of structures consisting of mechanical elements Dynamic responses of the mechanical structures by the solving of linear as well as nonlinear governing equations Fluid flow in MEMS and the evaluation of damping force acting on the moving structures Basic equations of electromagnetics that govern the electrical behavior of MEMS Combining the MEMS building blocks to form actuators and sensors for a specific purpose All chapters from first to last use a unified approach in which equations in previous chapters are used in the derivations of closed-form solutions in later chapters. This helps readers to easily understand the problems to be solved and the derived solutions. In addition, theoretical models for the elements and systems in the later chapters are provided, and solutions for the static and dynamic responses are obtained in closed-forms. This book is designed for senior or graduate students in electrical and mechanical engineering, researchers in MEMS, and engineers from industry. It is ideal for radio frequency/electronics/sensor specialists who, for design purposes, would like to forego numerical nonlinear mechanical simulations. The closed-form solution approach will also appeal to device designers interested in performing large-scale parametric analysis.


Smart Sensors and MEMS

Smart Sensors and MEMS

Author: S Nihtianov

Publisher: Woodhead Publishing

Published: 2018-02-27

Total Pages: 606

ISBN-13: 0081020562

DOWNLOAD EBOOK

Smart Sensors and MEMS: Intelligent Devices and Microsystems for Industrial Applications, Second Edition highlights new, important developments in the field, including the latest on magnetic sensors, temperature sensors and microreaction chambers. The book outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, among other topics. New sections include discussions on magnetic and temperature sensors and the industrial applications of smart micro-electro-mechanical systems (MEMS). The book is an invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry. In addition, engineers looking for industrial sensing, monitoring and automation solutions will find this a comprehensive source of information. - Contains new chapters that address key applications, such as magnetic sensors, microreaction chambers and temperature sensors - Provides an in-depth information on a wide array of industrial applications for smart sensors and smart MEMS - Presents the only book to discuss both smart sensors and MEMS for industrial applications


Handbook of Silicon Based MEMS Materials and Technologies

Handbook of Silicon Based MEMS Materials and Technologies

Author: Markku Tilli

Publisher: William Andrew

Published: 2015-09-02

Total Pages: 827

ISBN-13: 0323312233

DOWNLOAD EBOOK

The Handbook of Silicon Based MEMS Materials and Technologies, Second Edition, is a comprehensive guide to MEMS materials, technologies, and manufacturing that examines the state-of-the-art with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, manufacturing, processing, system integration, measurement, and materials characterization techniques, sensors, and multi-scale modeling methods of MEMS structures, silicon crystals, and wafers, also covering micromachining technologies in MEMS and encapsulation of MEMS components. Furthermore, it provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques, shows how to protect devices from the environment, and provides tactics to decrease package size for a dramatic reduction in costs. - Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques - Shows how to protect devices from the environment and decrease package size for a dramatic reduction in packaging costs - Discusses properties, preparation, and growth of silicon crystals and wafers - Explains the many properties (mechanical, electrostatic, optical, etc.), manufacturing, processing, measuring (including focused beam techniques), and multiscale modeling methods of MEMS structures - Geared towards practical applications rather than theory


Fundamentals of Inkjet Printing

Fundamentals of Inkjet Printing

Author: Stephen D. Hoath

Publisher: John Wiley & Sons

Published: 2016-03-14

Total Pages: 485

ISBN-13: 3527337857

DOWNLOAD EBOOK

From droplet formation to final applications, this practical book presents the subject in a comprehensive and clear form, using only content derived from the latest published results. Starting at the very beginning, the topic of fluid mechanics is explained, allowing for a suitable regime for printing inks to subsequently be selected. There then follows a discussion on different print-head types and how to form droplets, covering the behavior of droplets in flight and upon impact with the substrate, as well as the droplet's wetting and drying behavior at the substrate. Commonly observed effects, such as the coffee ring effect, are included as well as printing in the third dimension. The book concludes with a look at what the future holds. As a unique feature, worked examples both at the practical and simulation level, as well as case studies are included. As a result, students and engineers in R&D will come to fully understand the complete process of inkjet printing.


Inkjet Technology for Digital Fabrication

Inkjet Technology for Digital Fabrication

Author: Ian M. Hutchings

Publisher: John Wiley & Sons

Published: 2012-12-26

Total Pages: 417

ISBN-13: 0470681985

DOWNLOAD EBOOK

Whilst inkjet technology is well-established on home and small office desktops and is now having increasing impact in commercial printing, it can also be used to deposit materials other than ink as individual droplets at a microscopic scale. This allows metals, ceramics, polymers and biological materials (including living cells) to be patterned on to substrates under precise digital control. This approach offers huge potential advantages for manufacturing, since inkjet methods can be used to generate structures and functions which cannot be attained in other ways. Beginning with an overview of the fundamentals, this bookcovers the key components, for example piezoelectric print-heads and fluids for inkjet printing, and the processes involved. It goes on to describe specific applications, e.g. MEMS, printed circuits, active and passive electronics, biopolymers and living cells, and additive manufacturing. Detailed case studies are included on flat-panel OLED displays, RFID (radio-frequency identification) manufacturing and tissue engineering, while a comprehensive examination of the current technologies and future directions of inkjet technology completes the coverage. With contributions from both academic researchers and leading names in the industry, Inkjet Technology for Digital Fabrication is a comprehensive resource for technical development engineers, researchers and students in inkjet technology and system development, and will also appeal to researchers in chemistry, physics, engineering, materials science and electronics.