Injectable Smart Hydrogels for Biomedical Applications

Injectable Smart Hydrogels for Biomedical Applications

Author: Jagan Mohan Dodda

Publisher: Royal Society of Chemistry

Published: 2024-07-19

Total Pages: 436

ISBN-13: 183767308X

DOWNLOAD EBOOK

Injectable smart hydrogels possess various properties that enable the development of new minimally invasive approaches to avoid problems associated with traditional implants. Researchers in academia and industry will learn the range of synthetic strategies used to produce this emerging class of biomaterials. Clinicians will also be inspired by the range of applications demonstrated to advance surgical procedures. The editors have brought together a global authorship to ensure that this book presents the state-of-the-art in materials engineering and therapeutics. Their knowledge and experience will help the reader develop better knowledge of the field and inspire new innovations, that cover a range of areas such as regenerative medicine, cancer therapy, and drug delivery.


Injectable Hydrogels for 3D Bioprinting

Injectable Hydrogels for 3D Bioprinting

Author: Insup Noh

Publisher: Royal Society of Chemistry

Published: 2021-07-30

Total Pages: 505

ISBN-13: 1788018834

DOWNLOAD EBOOK

Hydrogels represent one of the cornerstones in tissue engineering and regenerative medicine, due to their biocompatibility and physiologically relevant properties. These inherent characteristics mean that they can be widely exploited as bioinks in 3D bioprinting for tissue engineering applications as well as injectable gels for cell therapy and drug delivery purposes. The research in these fields is booming and this book provides the reader with a terrific introduction to the burgeoning field of injectable hydrogel design, bioprinting and tissue engineering. Edited by three leaders in the field, users of this book will learn about different classes of hydrogels, properties and synthesis strategies to produce bioinks. A section devoted to the key processing and design challenges at the hydrogel/3D bioprinting/tissue interface is also covered. The final section of the book closes with pertinent clinical applications. Tightly edited, the reader will find this book to be a coherent resource to learn from. It will appeal to those working across biomaterials science, chemical and biomedical engineering, tissue engineering and regenerative medicine.


Injectable Biomaterials

Injectable Biomaterials

Author: Brent Vernon

Publisher: Elsevier

Published: 2011-01-24

Total Pages: 425

ISBN-13: 0857091379

DOWNLOAD EBOOK

Novel injectable materials for non-invasive surgical procedures are becoming increasingly popular. An advantage of these materials include easy deliverability into the body, however the suitability of their mechanical properties must also be carefully considered. Injectable biomaterials covers the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology.Part one focuses on materials and properties, with chapters covering the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites. Part two covers the clinical applications of injectable biomaterials, including chapters on drug delivery, tissue engineering and orthopaedic applications as well as injectable materials for gene delivery systems. In part three, existing and developing technologies are discussed. Chapters in this part cover such topics as environmentally responsive biomaterials, injectable nanotechnology, injectable biodegradable materials and biocompatibility. There are also chapters focusing on troubleshooting and potential future applications of injectable biomaterials.With its distinguished editor and international team of contributors, Injectable biomaterials is a standard reference for materials scientists and researchers working in the biomaterials industry, as well as those with an academic interest in the subject. It will also be beneficial to clinicians. - Comprehensively examines the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology - Reviews the design of injectable biomaterials as well as their rheological properties and the mechanical properties of injectable polymers and composites - Explores clinical applications of injectable biomaterials, including drug delivery, tissue engineering, orthopaedic applications and injectable materials for gene delivery systems


Plant Polysaccharides-Based Multiple-Unit Systems for Oral Drug Delivery

Plant Polysaccharides-Based Multiple-Unit Systems for Oral Drug Delivery

Author: Amit Kumar Nayak

Publisher: Springer

Published: 2019-03-27

Total Pages: 136

ISBN-13: 9811067848

DOWNLOAD EBOOK

This book explores the use of various plant polysaccharides for pharmaceutical purposes, including drug delivery. It examines the exploitation of plant polysaccharides’ auxiliary functions to enhance drug release, stability, bioavailability and target specificity. Plant-derived materials are at the center of drug-delivery research thanks to their non-toxicity, biodegradability, ready availability, eco-friendliness and low extraction costs. These materials include polysaccharides, a class of naturally occurring polymers consisting of glucose monomers, which serve as storage carbohydrates in cereals, root vegetables, rhizomes, seeds, fruits, etc.


Natural Polysaccharides in Drug Delivery and Biomedical Applications

Natural Polysaccharides in Drug Delivery and Biomedical Applications

Author: Md Saquib Hasnain

Publisher: Academic Press

Published: 2019-07-23

Total Pages: 656

ISBN-13: 0128170565

DOWNLOAD EBOOK

Natural Polysaccharides in Drug Delivery and Biomedical Applications provides a fundamental overview of natural polysaccharides, their sources, extraction methodologies, and characterizations. It covers specific natural polysaccharides and their effective application in drug delivery and biomedical use. Additionally, chapters in the book discuss key topics including the sources and extraction methodologies of natural polysaccharides, their role in tissue engineering applications, polysaccharide-based nanoparticles in biomedical applications, and their role in the delivery of anticancer drugs. Written by industry leaders and edited by experts, this book emphasizes recent advances made in the field.Natural Polysaccharides in Drug Delivery and Biomedical Applications provides academics, researchers, and pharmaceutical health care professionals with a comprehensive book on polysaccharides in pharmaceutical delivery process. - Provides fundamental concepts of natural polysaccharides as it applies to the pharmaceutical, biomedical, and biotechnology industries - Includes contributions from global leaders and experts from academia, industry, and regulatory agencies in the application of natural polysaccharides in pharmaceutical products and biomedical utilization - Offers practical examples, illustrations, chemical structures, and research case studies to help explain natural polysaccharides concepts in drug delivery and biomedical applications


Biopolymeric Nanomaterials

Biopolymeric Nanomaterials

Author: Shamsher S. Kanwar

Publisher: Elsevier

Published: 2021-09-24

Total Pages: 732

ISBN-13: 0323853285

DOWNLOAD EBOOK

Biopolymeric Nanomaterials: Fundamentals and Applications outlines the fundamental design concepts and emerging applications of biopolymeric nanomaterials. The book also provides information on emerging applications of biopolymeric nanomaterials, including in biomedicine, manufacturing and water purification, as well as assessing their physical, chemical and biological properties. This is an important reference source for materials scientists, engineers and biomedical scientists who are seeking to increase their understanding of how polymeric nanomaterials are being used for a range of biomedical and industrial applications. Biopolymeric nanomaterials refer to biocompatible nanomaterials, consisting of biopolymers, such as protein (silk, collagen, gelatin, ß-casein, zein, and albumin), protein-mimicked polypeptides and polysaccharides (chitosan, alginate, pullulan, starch, and heparin). Biopolymeric nanomaterials may be used as i) delivery systems for bioactive compounds in food application, (ii) for delivery of therapeutic molecules (drugs and genes), or for (iii) tissue engineering. Provides information on the design concepts and synthesis of biopolymeric nanomaterials in biomedical and industrial applications Highlights the major properties and processing methods for biopolymeric nanomaterials Assesses the major challenges of producing biopolymeric nanomaterials on an industrial scale


Hydrogels

Hydrogels

Author: Lacramioara Popa

Publisher: BoD – Books on Demand

Published: 2019-04-10

Total Pages: 133

ISBN-13: 1789858755

DOWNLOAD EBOOK

Hydrogels, as three-dimensional polymer networks, are able to retain a large amount of water in their swollen state. The biomedical application of hydrogels was initially hampered by the toxicity of cross-linking agents and the limitations of hydrogel formation under physiological conditions. However, emerging knowledge in polymer chemistry and an increased understanding of biological processes have resulted in the design of versatile materials and minimally invasive therapies.The novel but challenging properties of hydrogels are attracting the attention of researchers in the biological, medical, and pharmaceutical fields. In the last few years, new methods have been developed for the preparation of hydrophilic polymers and hydrogels, which may be used in future biomedical and drug delivery applications. Such efforts include the synthesis of self-organized nanostructures based on triblock copolymers with applications in controlled drug delivery. These hydrogels could be used as carriers for drug delivery when combined with the techniques of drug imprinting and subsequent release. Engineered protein hydrogels have many potential advantages. They are excellent biomaterials and biodegradables. Furthermore, they could encapsulate drugs and be used in injectable forms to replace surgery, to repair damaged cartilage, in regenerative medicine, or in tissue engineering. Also, they have potential applications in gene therapy, although this field is relatively new.


Biodegradable Thermogels

Biodegradable Thermogels

Author: Xian Jun Loh

Publisher: Royal Society of Chemistry

Published: 2018-09-27

Total Pages: 198

ISBN-13: 1782629408

DOWNLOAD EBOOK

Biodegradable thermogels are a promising class of stimuli-responsive polymers. This book summarizes recent developments in thermogel research with a focus on synthesis and self-assembly mechanisms, gel biodegradability, and applications for drug delivery, cell encapsulation and tissue engineering. A closing chapter on commercialisation shows the challenges faced bringing this new material to market. Edited by leading authorities on the subject, this book offers a comprehensive overview for academics and professionals across polymer science, materials science and biomedical and chemical engineering.


Polyampholytes

Polyampholytes

Author: Sarkyt E. Kudaibergenov

Publisher: Springer Science & Business Media

Published: 2002-04-30

Total Pages: 232

ISBN-13: 9780306467813

DOWNLOAD EBOOK

This book comprehensively reviews the synthesis, characterization and application aspects of linear and crosslinked synthetic polyampholytes - simple model of biopolymers - starting from the 1950's. The synthetic strategy of "annealed", "quenched" and "zwitterionic" polyampholytes, the properties of polyampholytes in solutions and in gel state are considered. The complexation ability of polyampholytes with respect to transition metal ions, ionic surfactants, dyes and organic probes polyelectrolytes, proteins and colloid particles is discussed. Stimuli-sensitive behavior of various amphoteric gel and membrane systems demonstrating rhythmically phenomenon similar to that of heart beat, deformation, oscillation or self-oscillation phenomena stimulated by temperature, pH and electric field are illustrated. Catalytic properties of synthetic polyampholytes simulating the function of enzymes are also considered.