This book provides comprehensive coverage of smart biomaterials and their potential applications, a field that is developing at a very rapid pace. Because smart biomaterials are an emerging class of biomaterials that respond to small changes in external stimuli with large discontinuous changes in their physical properties, they have been designed to act as an “on–off” switch for, among others, bio separation, immunoanalysis, drug delivery technologies, gene therapy, diagnostics, bio sensors and artificial muscles. After an introduction to the topic and the history of smart biomaterials, the author gives the reader an in-depth look at the properties, mechanics, and characterization of smart biomaterials including hydrogels, particles, assemblies, surfaces, fibers and conjugates. Information on the wide range of applications for these materials follows, including drug delivery, tissue engineering, diagnostics, biosensors, bio separation and actuators. In addition, recent advances in shape memory biomaterials as active components of medical devices are also presented.
The past few years have witnessed the development of non-spherical metal nanoparticles with complex morphologies, which offer tremendous potential in materials science, chemistry, physics and medicine. Covering all important aspects and techniques of preparation and characterization of metal nanoparticles with controlled morphology and architecture, this book provides a sound overview - from the basics right up to recent developments. Renowned research scientists from all over the world present the existing knowledge in the field, covering theory and modeling, synthesis and properties of these nanomaterials. By emphasizing the underlying concepts and principles in detail, this book enables researchers to fully recognize the future research scope and the application potential of the complex-shaped metal nanoparticles, inspiring further research in this field.
The first overview of this topic begins with some historical aspects and a survey of the principles of the gas aggregation method. The second part covers modifications of this method resulting in different specialized techniques, while the third discusses the post-growth treatment that can be applied to the nanoparticles. The whole is rounded off by a review of future perspectives and the challenges facing the scientific and industrial communities. An excellent resource for anyone working with the synthesis of nanoparticles, both in academia and industry.
Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications brings into one place information on the design and biomedical applications of different classes of nanoparticles. While aspects are dealt with in individual journal articles, there is not one source that covers this area comprehensively. This book fills this gap in the literature. - Outlines an in-depth review of biomedical applications of a variety of nanoparticle classes - Discusses the major techniques for designing nanoparticles for use in biomedicine - Explores safety and regulatory aspects for the use of nanoparticles in biomedicine
Alle relevanten Informationen zu Eisenoxiden, von der Struktur und Transformation über Charakterisierungsverfahren bis hin zu den neuesten AnwendungEN. Ein Muss für alle, die in dem Fachgebiet arbeiten.
Nanoparticles have numerous biomedical applications including drug delivery, bone implants and imaging. A protein corona is formed when proteins existing in a biological system cover the nanoparticle surface. The formation of a nanoparticle–protein corona, changes the behaviour of the nanoparticle, resulting in new biological characteristics and influencing the circulation lifetime, accumulation, toxicity, cellular uptake and agglomeration. This book provides a detailed understanding of nanoparticle–protein corona formation, its biological significance and the factors that govern the formation of coronas. It also explains the impact of nanoparticle–protein interactions on biological assays, ecotoxicity studies and proteomics research. It will be of interest to researchers studying the application of nanoparticles as well as toxicologists and pharmaceutical chemists.
This book presents the comprehensive description of basic principles, methodologies, similarities and differences of nano-liposomes and -phytosomes. It focuses on the implications of these nano carriers in drug delivery and also includes detailed classification of nanoinonized drug particles, polymeric nanoparticles and hydrophobic nanoparticles. This book concludes with the biological, technical and study-design challenges of Nanopharmaceuticals and presents critical viewpoints of smart DNA nanostructures. The risk factors and regulatory concerns have also been kept in focus and the book includes the toxicity and application of different types of ionic liquids for humans and environment. It also critically describes characteristics, applications and regulatory gaps of nanoparticle-ionic liquid combined systems.
Advances in Cancer Research, Volume 139, provides invaluable information on the exciting and fast-moving field of cancer research. Original reviews are presented on a variety of topics relating to the rapidly developing intersection between nanotechnology and cancer research, with unique sections in the new release focusing on Exosomes as a theranostic for lung cancer, Nanotechnology and cancer immunotherapy, Ultrasound imaging agents and delivery systems, Dendronized systems for the delivery of chemotherapeutics, Thermosensitive liposomes for image-guided drug delivery, Supramolecular Chemistry in Tumor Analysis and Drug Delivery, Gold nanoparticles for delivery of cancer therapeutics, and Single cell barcode microchip for cancer research and therapy. - Provides the latest information on cancer research - Offers outstanding and original reviews on a range of cancer research topics - Serves as an indispensable reference for researchers and students alike