Dynamical Systems

Dynamical Systems

Author: Wang Sang Koon

Publisher: Springer

Published: 2011-06-01

Total Pages: 336

ISBN-13: 9780387495156

DOWNLOAD EBOOK

This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.


Solar Sailing

Solar Sailing

Author: Colin R. McInnes

Publisher: Springer Science & Business Media

Published: 2013-11-27

Total Pages: 321

ISBN-13: 1447139925

DOWNLOAD EBOOK

Solar sailing - using the sun as a propellant - offers the possibility of low-cost long-distance missions that are impossible with conventional spacecraft. This first comprehensive book on this propulsion method provides a detailed account of solar sailing, at a high technical level, but in a way accessible to the scientifically informed layperson. Solar sail orbital dynamics and solar radiation pressure form the foundations of the book, but the engineering design of solar sails is also considered, along with potential mission applications.


Spacecraft Trajectory Optimization

Spacecraft Trajectory Optimization

Author: Bruce A. Conway

Publisher: Cambridge University Press

Published: 2010-08-23

Total Pages: 313

ISBN-13: 113949077X

DOWNLOAD EBOOK

This is a long-overdue volume dedicated to space trajectory optimization. Interest in the subject has grown, as space missions of increasing levels of sophistication, complexity, and scientific return - hardly imaginable in the 1960s - have been designed and flown. Although the basic tools of optimization theory remain an accepted canon, there has been a revolution in the manner in which they are applied and in the development of numerical optimization. This volume purposely includes a variety of both analytical and numerical approaches to trajectory optimization. The choice of authors has been guided by the editor's intention to assemble the most expert and active researchers in the various specialities presented. The authors were given considerable freedom to choose their subjects, and although this may yield a somewhat eclectic volume, it also yields chapters written with palpable enthusiasm and relevance to contemporary problems.


Orbital Mechanics for Engineering Students

Orbital Mechanics for Engineering Students

Author: Howard D. Curtis

Publisher: Elsevier

Published: 2009-10-26

Total Pages: 740

ISBN-13: 0080887848

DOWNLOAD EBOOK

Orbital Mechanics for Engineering Students, Second Edition, provides an introduction to the basic concepts of space mechanics. These include vector kinematics in three dimensions; Newton's laws of motion and gravitation; relative motion; the vector-based solution of the classical two-body problem; derivation of Kepler's equations; orbits in three dimensions; preliminary orbit determination; and orbital maneuvers. The book also covers relative motion and the two-impulse rendezvous problem; interplanetary mission design using patched conics; rigid-body dynamics used to characterize the attitude of a space vehicle; satellite attitude dynamics; and the characteristics and design of multi-stage launch vehicles. Each chapter begins with an outline of key concepts and concludes with problems that are based on the material covered. This text is written for undergraduates who are studying orbital mechanics for the first time and have completed courses in physics, dynamics, and mathematics, including differential equations and applied linear algebra. Graduate students, researchers, and experienced practitioners will also find useful review materials in the book. - NEW: Reorganized and improved discusions of coordinate systems, new discussion on perturbations and quarternions - NEW: Increased coverage of attitude dynamics, including new Matlab algorithms and examples in chapter 10 - New examples and homework problems


Modern Robotics

Modern Robotics

Author: Kevin M. Lynch

Publisher: Cambridge University Press

Published: 2017-05-25

Total Pages: 545

ISBN-13: 1107156300

DOWNLOAD EBOOK

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.


Resources of Near-Earth Space

Resources of Near-Earth Space

Author: John S. Lewis

Publisher:

Published: 1993

Total Pages: 1000

ISBN-13:

DOWNLOAD EBOOK

Out of print since 2006, this book is now available online. Click here! A base on the Moon, an expedition to Mars. . . . Some time in the near future, for scientific or cultural reasons, humanity will likely decide to pursue one of these fantastic ventures in space. How can we increase the scope and reduce the cost of these ambitious activities?The parts of the solar system that are most accessible from Earth--the Moon, the near-Earth asteroids, Mars and its moons--are rich in materials of great potential value to humanity. Resources of Near-Earth Space explores the possibilities both of utilizing these materials to produce propellants, structural metals, refractories, life-support fluids, and other materials on site to reduce the costs of space exploration, and of providing a source of materials and energy for our own planet that would not be environmentally destructive to Earth.This volume summarizes the present state of the art in attempts to realize these possibilities: identifying the resources, mining and processing, transportation, and economics. As a broad survey of a rapidly evolving field, it is intended as a technical introduction to the use of nonterrestrial materials for scientists, engineers, and industrial and governmental project managers who seek to make space more accessible.


Low-Energy Lunar Trajectory Design

Low-Energy Lunar Trajectory Design

Author: Jeffrey S. Parker

Publisher: John Wiley & Sons

Published: 2014-06-25

Total Pages: 452

ISBN-13: 1118855310

DOWNLOAD EBOOK

Based on years of research conducted at the NASA Jet Propulsion Laboratory, Low-Energy Lunar Trajectory Design provides high-level information to mission managers and detailed information to mission designers about low-energy transfers between Earth and the moon. The book answers high-level questions about the availability and performance of such transfers in any given month and year. Low-energy lunar transfers are compared with various other types of transfers, and placed within the context of historical missions. Using this book, designers may reconstruct any transfer described therein, as well as design similar transfers with particular design parameters. An Appendix, “Locating the Lagrange Points,” and a useful list of terms and constants completes this technical reference. Surveys thousands of possible trajectories that may be used to transfer spacecraft between Earth and the moon, including transfers to lunar libration orbits, low lunar orbits, and the lunar surface Provides information about the methods, models, and tools used to design low-energy lunar transfers Includes discussion about the variations of these transfers from one month to the next, and the important operational aspects of implementing a low-energy lunar transfer Additional discussions address navigation, station-keeping, and spacecraft systems issues


Integrated Design for Space Transportation System

Integrated Design for Space Transportation System

Author: B.N. Suresh

Publisher: Springer

Published: 2015-11-20

Total Pages: 792

ISBN-13: 8132225325

DOWNLOAD EBOOK

The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbital mechanics of satellites including different coordinate frames, orbital perturbations and orbital transfers are explained. For launching the satellites to meet specific mission requirements, viz., payload/orbit, design considerations, giving step by step procedure are briefed. The selection methodology for launch vehicle configuration, its optimum staging and the factors which influence the vehicle performance are summarized. The influence of external, internal and dynamic operating environments experienced by the vehicle subsystems and the remedial measures needed are highlighted. The mission design strategies and their influence on the vehicle design process are elaborated. The various critical aspects of STS subsystems like flight mechanics, propulsion, structures and materials, thermal systems, stage auxiliary systems, navigation, guidance and control and the interdependencies and interactions between them are covered. The design guidelines, complexity of the flight environment and the reentry dynamics for the reentry missions are included. The book is not targeted as a design tool for any particular discipline or subsystem. Some of the design related equations or expressions are not attempted to derive from the first principle as this is beyond the scope of this book. However, the important analytical expressions, graphs and sketches which are essential to provide in-depth understanding for the design process as well as to understand the interactions between different subsystems are appropriately included.