From the reviews: "This book nicely complements the existing literature on information and coding theory by concentrating on arbitrary nonstationary and/or nonergodic sources and channels with arbitrarily large alphabets. Even with such generality the authors have managed to successfully reach a highly unconventional but very fertile exposition rendering new insights into many problems." -- MATHEMATICAL REVIEWS
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Information Theory is studied from the following points of view: (1) the theory of entropy as amount of information; (2) the mathematical structure of information sources (probability measures); and (3) the theory of information channels. Shannon entropy and Kolmogorov-Sinai entropy are defined and their basic properties are examined, where the latter entropy is extended to be a linear functional on a certain set of measures. Ergodic and mixing properties of stationary sources are studied as well as AMS (asymptotically mean stationary) sources.The main purpose of this book is to present information channels in the environment of functional analysis and operator theory as well as probability theory. Ergodic, mixing, and AMS channels are also considered in detail with some illustrations. In this second edition, channel operators are studied in many aspects, which generalize ordinary channels. Also Gaussian channels are considered in detail together with Gaussian measures on a Hilbert space. The Special Topics chapter deals with features such as generalized capacity, channels with an intermediate noncommutative system, and von Neumann algebra method for channels. Finally, quantum (noncommutative) information channels are examined in an independent chapter, which may be regarded as an introduction to quantum information theory. Von Neumann entropy is introduced and its generalization to a C*-algebra setting is given. Basic results on quantum channels and entropy transmission are also considered.
The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
If the carriers of information are governed by quantum mechanics, new principles for information processing apply. This graduate textbook introduces the underlying mathematical theory for quantum communication, computation, and cryptography. A focus lies on the concept of quantum channels, understanding figures of merit, e.g. fidelities and entropies in the quantum world, and understanding the interrelationship of various quantum information processing protocols.
This graduate textbook provides a unified view of quantum information theory. Clearly explaining the necessary mathematical basis, it merges key topics from both information-theoretic and quantum- mechanical viewpoints and provides lucid explanations of the basic results. Thanks to this unified approach, it makes accessible such advanced topics in quantum communication as quantum teleportation, superdense coding, quantum state transmission (quantum error-correction) and quantum encryption. Since the publication of the preceding book Quantum Information: An Introduction, there have been tremendous strides in the field of quantum information. In particular, the following topics – all of which are addressed here – made seen major advances: quantum state discrimination, quantum channel capacity, bipartite and multipartite entanglement, security analysis on quantum communication, reverse Shannon theorem and uncertainty relation. With regard to the analysis of quantum security, the present book employs an improved method for the evaluation of leaked information and identifies a remarkable relation between quantum security and quantum coherence. Taken together, these two improvements allow a better analysis of quantum state transmission. In addition, various types of the newly discovered uncertainty relation are explained. Presenting a wealth of new developments, the book introduces readers to the latest advances and challenges in quantum information. To aid in understanding, each chapter is accompanied by a set of exercises and solutions.
This fundamental monograph introduces both the probabilistic and algebraic aspects of information theory and coding. It has evolved from the authors' years of experience teaching at the undergraduate level, including several Cambridge Maths Tripos courses. The book provides relevant background material, a wide range of worked examples and clear solutions to problems from real exam papers. It is a valuable teaching aid for undergraduate and graduate students, or for researchers and engineers who want to grasp the basic principles.
This monograph briefly formulates fundamental notions and results of Shannon theory on reliable transmission via coding and gives a survey of results obtained in last two-three decades by the authors.
This book presents a succinct and mathematically rigorous treatment of the main pillars of Shannon’s information theory, discussing the fundamental concepts and indispensable results of Shannon’s mathematical theory of communications. It includes five meticulously written core chapters (with accompanying problems), emphasizing the key topics of information measures; lossless and lossy data compression; channel coding; and joint source-channel coding for single-user (point-to-point) communications systems. It also features two appendices covering necessary background material in real analysis and in probability theory and stochastic processes. The book is ideal for a one-semester foundational course on information theory for senior undergraduate and entry-level graduate students in mathematics, statistics, engineering, and computing and information sciences. A comprehensive instructor’s solutions manual is available.
This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the subject are more or less mature. One of the main goals of this book therefore is to present these results in a unifying and coherent manner. While the previous book focused only on information theory for discrete random variables, the current book contains two new chapters on information theory for continuous random variables, namely the chapter on di?erential entropy and the chapter on continuous-valued channels. With these topics included, the book becomes more comprehensive and is more suitable to be used as a textbook for a course in an electrical engineering department.