Information-based Complexity

Information-based Complexity

Author: Joseph Frederick Traub

Publisher:

Published: 1988

Total Pages: 552

ISBN-13:

DOWNLOAD EBOOK

This book provides a comprehensive treatment of information-based complexity, the branch of computational complexity that deals with the intrinsic difficulty of the approximate solution of problems for which the information is partial, noisy, and priced. Such problems arise in many areas including economics, physics, human and robotic vision, scientific and engineering computation, geophysics, decision theory, signal processing and control theory.


Complexity and Information

Complexity and Information

Author: J. F. Traub

Publisher: Cambridge University Press

Published: 1998-12-10

Total Pages: 152

ISBN-13: 9780521485067

DOWNLOAD EBOOK

The twin themes of computational complexity and information pervade this 1998 book. It starts with an introduction to the computational complexity of continuous mathematical models, that is, information-based complexity. This is then used to illustrate a variety of topics, including breaking the curse of dimensionality, complexity of path integration, solvability of ill-posed problems, the value of information in computation, assigning values to mathematical hypotheses, and new, improved methods for mathematical finance. The style is informal, and the goals are exposition, insight and motivation. A comprehensive bibliography is provided, to which readers are referred for precise statements of results and their proofs. As the first introductory book on the subject it will be invaluable as a guide to the area for the many students and researchers whose disciplines, ranging from physics to finance, are influenced by the computational complexity of continuous problems.


Multivariate Algorithms and Information-Based Complexity

Multivariate Algorithms and Information-Based Complexity

Author: Fred J. Hickernell

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-06-08

Total Pages: 158

ISBN-13: 3110635461

DOWNLOAD EBOOK

The contributions by leading experts in this book focus on a variety of topics of current interest related to information-based complexity, ranging from function approximation, numerical integration, numerical methods for the sphere, and algorithms with random information, to Bayesian probabilistic numerical methods and numerical methods for stochastic differential equations.


Information and Complexity in Statistical Modeling

Information and Complexity in Statistical Modeling

Author: Jorma Rissanen

Publisher: Springer Science & Business Media

Published: 2007-12-15

Total Pages: 145

ISBN-13: 0387688129

DOWNLOAD EBOOK

No statistical model is "true" or "false," "right" or "wrong"; the models just have varying performance, which can be assessed. The main theme in this book is to teach modeling based on the principle that the objective is to extract the information from data that can be learned with suggested classes of probability models. The intuitive and fundamental concepts of complexity, learnable information, and noise are formalized, which provides a firm information theoretic foundation for statistical modeling. Although the prerequisites include only basic probability calculus and statistics, a moderate level of mathematical proficiency would be beneficial.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


An Introduction to Kolmogorov Complexity and Its Applications

An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 655

ISBN-13: 1475726066

DOWNLOAD EBOOK

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).


Information And Complexity

Information And Complexity

Author: Mark Burgin

Publisher: World Scientific

Published: 2016-11-28

Total Pages: 410

ISBN-13: 9813109041

DOWNLOAD EBOOK

The book is a collection of papers of experts in the fields of information and complexity. Information is a basic structure of the world, while complexity is a fundamental property of systems and processes. There are intrinsic relations between information and complexity.The research in information theory, the theory of complexity and their interrelations is very active. The book will expand knowledge on information, complexity and their relations representing the most recent and advanced studies and achievements in this area.The goal of the book is to present the topic from different perspectives — mathematical, informational, philosophical, methodological, etc.


Models of Science Dynamics

Models of Science Dynamics

Author: Andrea Scharnhorst

Publisher: Springer Science & Business Media

Published: 2012-01-24

Total Pages: 292

ISBN-13: 3642230687

DOWNLOAD EBOOK

Models of Science Dynamics aims to capture the structure and evolution of science, the emerging arena in which scholars, science and the communication of science become themselves the basic objects of research. In order to capture the essence of phenomena as diverse as the structure of co-authorship networks or the evolution of citation diffusion patterns, such models can be represented by conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, or computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive study of the topic. This volume fills this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented cover stochastic and statistical models, system-dynamics approaches, agent-based simulations, population-dynamics models, and complex-network models. The book comprises an introduction and a foundational chapter that defines and operationalizes terminology used in the study of science, as well as a review chapter that discusses the history of mathematical approaches to modeling science from an algorithmic-historiography perspective. It concludes with a survey of remaining challenges for future science models and their relevance for science and science policy.


The Engine of Complexity

The Engine of Complexity

Author: John E. Mayfield

Publisher: Columbia University Press

Published: 2013-07-09

Total Pages: 417

ISBN-13: 0231535287

DOWNLOAD EBOOK

The concepts of evolution and complexity theory have become part of the intellectual ether permeating the life sciences, the social and behavioral sciences, and, more recently, management science and economics. In this book, John E. Mayfield elegantly synthesizes core concepts from multiple disciplines to offer a new approach to understanding how evolution works and how complex organisms, structures, organizations, and social orders can and do arise based on information theory and computational science. Intended for the intellectually adventuresome, this book challenges and rewards readers with a nuanced understanding of evolution and complexity that offers consistent, durable, and coherent explanations for major aspects of our life experiences. Numerous examples throughout the book illustrate evolution and complexity formation in action and highlight the core function of computation lying at the work's heart.


Think Complexity

Think Complexity

Author: Allen B. Downey

Publisher: "O'Reilly Media, Inc."

Published: 2012-02-23

Total Pages: 159

ISBN-13: 1449331696

DOWNLOAD EBOOK

Expand your Python skills by working with data structures and algorithms in a refreshing context—through an eye-opening exploration of complexity science. Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations. You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise. Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tables Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines Get starter code and solutions to help you re-implement and extend original experiments in complexity Explore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topics Examine case studies of complex systems submitted by students and readers