This book constitutes the refereed proceedings of the 9th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2016, held in Münster, Germany, in October 2015. The 17 full papers presented together with 1 invited talk were carefully reviewed and selected from 50 submissions. The focus of the conference was on following topics: sustainable education in informatics for pupils of all ages; connecting informatics lessons to the students’ everyday lives; teacher education in informatics or computer science; and research on informatics or computer science in schools (empirical/qualitative/quantitative/theory building/research methods/comparative studies/transferability of methods and results from other disciplines).
Drawing together the most up-to-date research from experts all across the world, the second edition of Computer Science Education offers the most up-to-date coverage available on this developing subject, ideal for building confidence of new pre-service and in-service educators teaching a new discipline. It provides an international overview of key concepts, pedagogical approaches and assessment practices. Highlights of the second edition include: - New sections on machine learning and data-driven (epistemic) programming - A new focus on equity and inclusion in computer science education - Chapters updated throughout, including a revised chapter on relating ethical and societal aspects to knowledge-rich aspects of computer science education - A new set of chapters on the learning of programming, including design, pedagogy and misconceptions - A chapter on the way we use language in the computer science classroom. The book is structured to support the reader with chapter outlines, synopses and key points. Explanations of key concepts, real-life examples and reflective points keep the theory grounded in classroom practice. The book is accompanied by a companion website, including online summaries for each chapter, 3-minute video summaries by each author and an archived chapter on taxonomies and competencies from the first edition.
This open access book aims to set an agenda for research and action in the field of Digital Humanism through short essays written by selected thinkers from a variety of disciplines, including computer science, philosophy, education, law, economics, history, anthropology, political science, and sociology. This initiative emerged from the Vienna Manifesto on Digital Humanism and the associated lecture series. Digital Humanism deals with the complex relationships between people and machines in digital times. It acknowledges the potential of information technology. At the same time, it points to societal threats such as privacy violations and ethical concerns around artificial intelligence, automation and loss of jobs, ongoing monopolization on the Web, and sovereignty. Digital Humanism aims to address these topics with a sense of urgency but with a constructive mindset. The book argues for a Digital Humanism that analyses and, most importantly, influences the complex interplay of technology and humankind toward a better society and life while fully respecting universal human rights. It is a call to shaping technologies in accordance with human values and needs.
This book constitutes the proceedings of the 13th International Conference on Informatics in Schools: Situation, Evolution and Perspectives, ISSEP 2020, held in Tallinn, Estonia, in November 2020. Due to COVID-19 related travelling restrictions the conference had to be switched to online format. The 18 revised full papers presented were carefully reviewed and selected from 53 submissions. They are organized in topical sections named: Tasks for Informatics Competitions; Engagement and Gender Issues in School Informatics; Informatics Teacher Education; Curriculum and Pedagogical Issues.
This book constitutes the refereed proceedings of the 7th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2014, held in Istanbul, Turkey, in September 2014. The 13 full papers presented together with 2 keynotes were carefully reviewed and selected from 33 submissions. The focus of the conference was on following topics: Competence Science Education, Competence Measurement for Informatics, Emerging Technologies and Tools for Informatics, Teacher Education in Informatics, and Curriculum Issues.
This volume includes contributions based on selected full papers presented at the 11th Pan-Hellenic and International Conference “ICT in Education”, held in Greece in 2018. The volume includes papers covering technical, pedagogical, organizational, instructional, as well as policy aspects of ICT in Education and e-Learning. Special emphasis is given to applied research relevant to the educational practice guided by the educational realities in schools, colleges, universities and informal learning organizations. This volume encompasses current trends, perspectives, and approaches determining e-Learning and ICT integration in practice, including learning and teaching, curriculum and instructional design, learning media and environments, teacher education and professional development. It is based on research work originally presented at the conference, but the call for chapters was open and disseminated to the international community attracting also international contributions.
This book introduces the reader to evidence-based non-formal and informal science learning considerations (including technological and pedagogical innovations) that have emerged in and empowered the information and communications technology (ICT) era. The contributions come from diverse countries and contexts (such as hackerspaces, museums, makerspaces, after-school activities) to support a wide range of educators, practitioners, and researchers (such as K-12 teachers, learning scientists, museum curators, librarians, parents, hobbyists). The documented considerations, lessons learned, and concepts have been extracted using diverse methods, ranging from experience reports and conceptual methods to quantitative studies and field observation using qualitative methods. This volume attempts to support the preparation, set-up, implementation, but also evaluation of informal learning activities to enhance science education.
The American Medical Informatics Association (AMIA) defines the term biomedical informatics (BMI) as: The interdisciplinary field that studies and pursues the effective uses of biomedical data, information, and knowledge for scientific inquiry, problem solving and decision making, motivated by efforts to improve human health. This book: Applied Interdisciplinary Theory in Health Informatics: A Knowledge Base for Practitioners, explores the theories that have been applied in health informatics and the differences they have made. The editors, all proponents of evidence-based health informatics, came together within the European Federation of Medical Informatics (EFMI) Working Group on Health IT Evaluation and the International Medical Informatics Association (IMIA) Working Group on Technology Assessment and Quality Development. The purpose of the book, which has a foreword by Charles Friedman, is to move forward the agenda of evidence-based health informatics by emphasizing theory-informed work aimed at enriching the understanding of this uniquely complex field. The book takes the AMIA definition as particularly helpful in its articulation of the three foundational domains of health informatics: health science, information science, and social science and their various overlaps, and this model has been used to structure the content of the book around the major subject areas. The book discusses some of the most important and commonly used theories relevant to health informatics, and constitutes a first iteration of a consolidated knowledge base that will advance the science of the field.
A guide to computational thinking education, with a focus on artificial intelligence literacy and the integration of computing and physical objects. Computing has become an essential part of today’s primary and secondary school curricula. In recent years, K–12 computer education has shifted from computer science itself to the broader perspective of computational thinking (CT), which is less about technology than a way of thinking and solving problems—“a fundamental skill for everyone, not just computer scientists,” in the words of Jeanette Wing, author of a foundational article on CT. This volume introduces a variety of approaches to CT in K–12 education, offering a wide range of international perspectives that focus on artificial intelligence (AI) literacy and the integration of computing and physical objects. The book first offers an overview of CT and its importance in K–12 education, covering such topics as the rationale for teaching CT; programming as a general problem-solving skill; and the “phenomenon-based learning” approach. It then addresses the educational implications of the explosion in AI research, discussing, among other things, the importance of teaching children to be conscientious designers and consumers of AI. Finally, the book examines the increasing influence of physical devices in CT education, considering the learning opportunities offered by robotics. Contributors Harold Abelson, Cynthia Breazeal, Karen Brennan, Michael E. Caspersen, Christian Dindler, Daniella DiPaola, Nardie Fanchamps, Christina Gardner-McCune, Mark Guzdial, Kai Hakkarainen, Fredrik Heintz, Paul Hennissen, H. Ulrich Hoppe, Ole Sejer Iversen, Siu-Cheung Kong, Wai-Ying Kwok, Sven Manske, Jesús Moreno-León, Blakeley H. Payne, Sini Riikonen, Gregorio Robles, Marcos Román-González, Pirita Seitamaa-Hakkarainen, Ju-Ling Shih, Pasi Silander, Lou Slangen, Rachel Charlotte Smith, Marcus Specht, Florence R. Sullivan, David S. Touretzky