Fibre-reinforced polymer (FRP) composites are used to strengthen reinforced concrete (RC) structures. A large amount of research now exists on this. This book brings together all existing research into one volume.
Strengthening Design of Reinforced Concrete with FRP establishes the art and science of strengthening design of reinforced concrete with fiber-reinforced polymer (FRP) beyond the abstract nature of the design guidelines from Canada (ISIS Canada 2001), Europe (FIB Task Group 9.3 2001), and the United States (ACI 440.2R-08). Evolved from thorough cla
Hat ein Werkstoff seine Elastizitatsgrenze erreicht, so verhalt er sich inelastisch. Ingenieure und Designer mussen wissen, mit welchen Eigenschaften dann zu rechnen ist. Dieser Band vermittelt Ihnen den aktuellen Wissensstand auf dem Gebiet des plastischen Verhaltens und der plastischen Zug-Spannungs-Beziehungen. Behandelt werden in erster Linie Baustoffe, vor allem Stahl, aber auch Beton und Boden. Eine ausgewogene Mischung aus qualitativer Diskussion und mathematischer Theorie! (05/00)
The contents of this book have been chosen with the following main aims: to review the present coverage of the major design codes and the CIRIA guide, and to explain the fundamental behaviour of deep beams; to provide information on design topics which are inadequately covered by the current codes and design manuals; and to give authoritative revie
The repair of deteriorated, damaged and substandard civil infrastructures has become one of the most important issues for the civil engineer worldwide. This important book discusses the use of externally-bonded fibre-reinforced polymer (FRP) composites to strengthen, rehabilitate and retrofit civil engineering structures, covering such aspects as material behaviour, structural design and quality assurance.The first three chapters of the book review structurally-deficient civil engineering infrastructure, including concrete, metallic, masonry and timber structures. FRP composites used in rehabilitation and surface preparation of the component materials are also reviewed. The next four chapters deal with the design of FRP systems for the flexural and shear strengthening of reinforced concrete (RC) beams and the strengthening of RC columns. The following two chapters examine the strengthening of metallic and masonry structures with FRP composites. The last four chapters of the book are devoted to practical considerations in the flexural strengthening of beams with unstressed and prestressed FRP plates, durability of externally bonded FRP composite systems, quality assurance and control, maintenance, repair, and case studies.With its distinguished editors and international team of contributors, Strengthening and rehabilitation of civil infrastructures using fibre-reinforced polymer (FRP) composites is a valuable reference guide for engineers, scientists and technical personnel in civil and structural engineering working on the rehabilitation and strengthening of the civil infrastructure. - Reviews the use of fibre-reinforced polymer (FRP) composites in structurally damaged and sub-standard civil engineering structures - Examines the role and benefits of fibre-reinforced polymer (FRP) composites in different types of structures such as masonry and metallic strengthening - Covers practical considerations including material behaviour, structural design and quality assurance
This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
This book compiles state-of-the-art information on the behavior, analysis, and design of concrete beams containing transverse openings. Discussions include the need, effects, and classification of openings as well as the general requirements for fulfilling design pure bending, combined bending, and shear - illustrated with numerical examples torsion alone or in combination with bending and shear large rectangular openings as well as opening size and location on beam behavior methods for analyzing ultimate strength and serviceability requirements effects of torsion in beams large openings in continuous beams and their effects on possible redistribution of internal forces as well as guidelines and procedures for the design of such beams effect of prestressing on the serviceability and strength of beams with web openings design against cracking at openings and ultimate loads Concrete Beams with Openings serves as an invaluable source of information for designers and practicing engineers, especially useful since little or no provision or guidelines are currently available in most building codes.
Original research on performance of materials under a wide variety of blasts, impacts, severe loading and fireCritical information for protecting buildings and civil infrastructure against human attack, deterioration and natural disastersTest and design data for new types of concrete, steel and FRP materials This technical book is devoted to the empirical and theoretical analysis of how structures and the materials constituting them perform under the extreme conditions of explosions, fire, and impact. Each of the 119 fully refereed presentations is published here for the first time and was selected because of its original contribution to the science and engineering of how materials, bridges, buildings, tunnels and their components, such as beams and pre-stressed parts, respond to potentially destructive forces. Emphasis is placed on translating empirical data to design recommendations for strengthening structures, including strategies for fire and earthquake protection as well as blast mitigation. Technical details are provided on the development and behavior of new resistant materials, including reinforcements, especially for concrete, steel and their composites.
Dealing with a wide range of non-metallic materials, this book opens up possibilities of lighter, more durable structures. With contributions from leading international researchers and design engineers, it provides a complete overview of current knowledge on the subject.