Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization

Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization

Author: D. Butnariu

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 218

ISBN-13: 9401140669

DOWNLOAD EBOOK

The aim of this work is to present in a unified approach a series of results concerning totally convex functions on Banach spaces and their applications to building iterative algorithms for computing common fixed points of mea surable families of operators and optimization methods in infinite dimen sional settings. The notion of totally convex function was first studied by Butnariu, Censor and Reich [31] in the context of the space lRR because of its usefulness for establishing convergence of a Bregman projection method for finding common points of infinite families of closed convex sets. In this finite dimensional environment total convexity hardly differs from strict convexity. In fact, a function with closed domain in a finite dimensional Banach space is totally convex if and only if it is strictly convex. The relevancy of total convexity as a strengthened form of strict convexity becomes apparent when the Banach space on which the function is defined is infinite dimensional. In this case, total convexity is a property stronger than strict convexity but weaker than locally uniform convexity (see Section 1.3 below). The study of totally convex functions in infinite dimensional Banach spaces was started in [33] where it was shown that they are useful tools for extrapolating properties commonly known to belong to operators satisfying demanding contractivity requirements to classes of operators which are not even mildly nonexpansive.


Convexity and Optimization in Banach Spaces

Convexity and Optimization in Banach Spaces

Author: Viorel Barbu

Publisher: Springer Science & Business Media

Published: 2012-01-03

Total Pages: 376

ISBN-13: 940072246X

DOWNLOAD EBOOK

An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.


Optimality Conditions in Convex Optimization

Optimality Conditions in Convex Optimization

Author: Anulekha Dhara

Publisher: CRC Press

Published: 2011-10-17

Total Pages: 446

ISBN-13: 1439868220

DOWNLOAD EBOOK

Optimality Conditions in Convex Optimization explores an important and central issue in the field of convex optimization: optimality conditions. It brings together the most important and recent results in this area that have been scattered in the literature—notably in the area of convex analysis—essential in developing many of the important results in this book, and not usually found in conventional texts. Unlike other books on convex optimization, which usually discuss algorithms along with some basic theory, the sole focus of this book is on fundamental and advanced convex optimization theory. Although many results presented in the book can also be proved in infinite dimensions, the authors focus on finite dimensions to allow for much deeper results and a better understanding of the structures involved in a convex optimization problem. They address semi-infinite optimization problems; approximate solution concepts of convex optimization problems; and some classes of non-convex problems which can be studied using the tools of convex analysis. They include examples wherever needed, provide details of major results, and discuss proofs of the main results.


Conjugate Duality and Optimization

Conjugate Duality and Optimization

Author: R. Tyrrell Rockafellar

Publisher: SIAM

Published: 1974-01-01

Total Pages: 82

ISBN-13: 0898710138

DOWNLOAD EBOOK

The theory of duality in problems of optimization is developed in a setting of finite and infinite dimensional spaces using convex analysis. Applications to convex and nonconvex problems. Expository account containing many new results. (Author).


Infinite Dimensional Analysis

Infinite Dimensional Analysis

Author: Charalambos D. Aliprantis

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 623

ISBN-13: 3662030047

DOWNLOAD EBOOK

This text was born out of an advanced mathematical economics seminar at Caltech in 1989-90. We realized that the typical graduate student in mathematical economics has to be familiar with a vast amount of material that spans several traditional fields in mathematics. Much of the mate rial appears only in esoteric research monographs that are designed for specialists, not for the sort of generalist that our students need be. We hope that in a small way this text will make the material here accessible to a much broader audience. While our motivation is to present and orga nize the analytical foundations underlying modern economics and finance, this is a book of mathematics, not of economics. We mention applications to economics but present very few of them. They are there to convince economists that the material has so me relevance and to let mathematicians know that there are areas of application for these results. We feel that this text could be used for a course in analysis that would benefit math ematicians, engineers, and scientists. Most of the material we present is available elsewhere, but is scattered throughout a variety of sources and occasionally buried in obscurity. Some of our results are original (or more likely, independent rediscoveries). We have included some material that we cannot honestly say is neces sary to understand modern economic theory, but may yet prove useful in future research.


Optimization by Vector Space Methods

Optimization by Vector Space Methods

Author: David G. Luenberger

Publisher: John Wiley & Sons

Published: 1997-01-23

Total Pages: 348

ISBN-13: 9780471181170

DOWNLOAD EBOOK

Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.


Convexity and Optimization in Finite Dimensions I

Convexity and Optimization in Finite Dimensions I

Author: Josef Stoer

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 306

ISBN-13: 3642462162

DOWNLOAD EBOOK

Dantzig's development of linear programming into one of the most applicable optimization techniques has spread interest in the algebra of linear inequalities, the geometry of polyhedra, the topology of convex sets, and the analysis of convex functions. It is the goal of this volume to provide a synopsis of these topics, and thereby the theoretical back ground for the arithmetic of convex optimization to be treated in a sub sequent volume. The exposition of each chapter is essentially independent, and attempts to reflect a specific style of mathematical reasoning. The emphasis lies on linear and convex duality theory, as initiated by Gale, Kuhn and Tucker, Fenchel, and v. Neumann, because it represents the theoretical development whose impact on modern optimi zation techniques has been the most pronounced. Chapters 5 and 6 are devoted to two characteristic aspects of duality theory: conjugate functions or polarity on the one hand, and saddle points on the other. The Farkas lemma on linear inequalities and its generalizations, Motzkin's description of polyhedra, Minkowski's supporting plane theorem are indispensable elementary tools which are contained in chapters 1, 2 and 3, respectively. The treatment of extremal properties of polyhedra as well as of general convex sets is based on the far reaching work of Klee. Chapter 2 terminates with a description of Gale diagrams, a recently developed successful technique for exploring polyhedral structures.


Convex Optimization

Convex Optimization

Author: Stephen P. Boyd

Publisher: Cambridge University Press

Published: 2004-03-08

Total Pages: 744

ISBN-13: 9780521833783

DOWNLOAD EBOOK

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.