Inference for Diffusion Processes

Inference for Diffusion Processes

Author: Christiane Fuchs

Publisher: Springer Science & Business Media

Published: 2013-01-18

Total Pages: 439

ISBN-13: 3642259693

DOWNLOAD EBOOK

Diffusion processes are a promising instrument for realistically modelling the time-continuous evolution of phenomena not only in the natural sciences but also in finance and economics. Their mathematical theory, however, is challenging, and hence diffusion modelling is often carried out incorrectly, and the according statistical inference is considered almost exclusively by theoreticians. This book explains both topics in an illustrative way which also addresses practitioners. It provides a complete overview of the current state of research and presents important, novel insights. The theory is demonstrated using real data applications.


Statistical Inference for Ergodic Diffusion Processes

Statistical Inference for Ergodic Diffusion Processes

Author: Yury A. Kutoyants

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 493

ISBN-13: 144713866X

DOWNLOAD EBOOK

The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.


Parameter Estimation in Stochastic Differential Equations

Parameter Estimation in Stochastic Differential Equations

Author: Jaya P. N. Bishwal

Publisher: Springer

Published: 2007-09-26

Total Pages: 271

ISBN-13: 3540744487

DOWNLOAD EBOOK

Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.


Statistics of Random Processes II

Statistics of Random Processes II

Author: Robert S. Liptser

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 409

ISBN-13: 3662100282

DOWNLOAD EBOOK

"Written by two renowned experts in the field, the books under review contain a thorough and insightful treatment of the fundamental underpinnings of various aspects of stochastic processes as well as a wide range of applications. Providing clear exposition, deep mathematical results, and superb technical representation, they are masterpieces of the subject of stochastic analysis and nonlinear filtering....These books...will become classics." --SIAM REVIEW


Parameter Estimation in Stochastic Volatility Models

Parameter Estimation in Stochastic Volatility Models

Author: Jaya P. N. Bishwal

Publisher: Springer Nature

Published: 2022-08-06

Total Pages: 634

ISBN-13: 3031038614

DOWNLOAD EBOOK

This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.


Stochastic Epidemic Models with Inference

Stochastic Epidemic Models with Inference

Author: Tom Britton

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 477

ISBN-13: 3030309002

DOWNLOAD EBOOK

Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.


Statistical Inference for Fractional Diffusion Processes

Statistical Inference for Fractional Diffusion Processes

Author: B. L. S. Prakasa Rao

Publisher: John Wiley & Sons

Published: 2011-07-05

Total Pages: 213

ISBN-13: 0470975768

DOWNLOAD EBOOK

Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.


Applied Stochastic Differential Equations

Applied Stochastic Differential Equations

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 327

ISBN-13: 1316510085

DOWNLOAD EBOOK

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.


Bayesian Filtering and Smoothing

Bayesian Filtering and Smoothing

Author: Simo Särkkä

Publisher: Cambridge University Press

Published: 2013-09-05

Total Pages: 255

ISBN-13: 110703065X

DOWNLOAD EBOOK

A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.