After a brief review of the existing incomplete information literature, the effect of incomplete information on investors' exptected utility, risky asset prices, and interest rates is described. It is demonstrated that increasing the quality of investors' information need not increase their expected utility and the prices of risky assets. The impact of other factors is discussed in detail. It is also demonstrated that financial markets in general do not aggregate information efficiently, a fact that can explain the equity premium puzzle.
An introduction to economic applications of the theory of continuous-time finance that strikes a balance between mathematical rigor and economic interpretation of financial market regularities. This book introduces the economic applications of the theory of continuous-time finance, with the goal of enabling the construction of realistic models, particularly those involving incomplete markets. Indeed, most recent applications of continuous-time finance aim to capture the imperfections and dysfunctions of financial markets—characteristics that became especially apparent during the market turmoil that started in 2008. The book begins by using discrete time to illustrate the basic mechanisms and introduce such notions as completeness, redundant pricing, and no arbitrage. It develops the continuous-time analog of those mechanisms and introduces the powerful tools of stochastic calculus. Going beyond other textbooks, the book then focuses on the study of markets in which some form of incompleteness, volatility, heterogeneity, friction, or behavioral subtlety arises. After presenting solutions methods for control problems and related partial differential equations, the text examines portfolio optimization and equilibrium in incomplete markets, interest rate and fixed-income modeling, and stochastic volatility. Finally, it presents models where investors form different beliefs or suffer frictions, form habits, or have recursive utilities, studying the effects not only on optimal portfolio choices but also on equilibrium, or the price of primitive securities. The book strikes a balance between mathematical rigor and the need for economic interpretation of financial market regularities, although with an emphasis on the latter.
This book explains key financial concepts, mathematical tools and theories of mathematical finance. It is organized in four parts. The first brings together a number of results from discrete-time models. The second develops stochastic continuous-time models for the valuation of financial assets (the Black-Scholes formula and its extensions), for optimal portfolio and consumption choice, and for obtaining the yield curve and pricing interest rate products. The third part recalls some concepts and results of equilibrium theory and applies this in financial markets. The last part tackles market incompleteness and the valuation of exotic options.
New developments in measuring, evaluating and managing credit risk are discussed in this volume. Addressing both practitioners in the banking sector and resesarch institutions, the book provides a manifold view on one of the most-discussed topics in finance. Among the subjects treated are important issues, such as: the consequences of the new Basel Capital Accord (Basel II), different applications of credit risk models, and new methodologies in rating and measuring credit portfolio risk. The volume provides an overview of recent developments as well as future trends: a state-of-the-art compendium in the area of credit risk.
Venture Capital. A Euro-System Approach covers a wide spectrum of topics. These include: how venture capital really works, the relations between venture capital, corporate banking and stock exchanges, market trends in Europe and the US, legal issues related to the creation of venture capital firms and closed end funds, and finally regulatory and economic policy issues. The book is based on a strong link between a rigorous methodological approach and real world best practices of venture capitalists - thanks to a team of contributors formed by both academics and professionals of various fields.
"A wonderful display of the use of mathematical probability to derive a large set of results from a small set of assumptions. In summary, this is a well-written text that treats the key classical models of finance through an applied probability approach....It should serve as an excellent introduction for anyone studying the mathematics of the classical theory of finance." --SIAM
This second edition - completely up to date with new exercises - provides a comprehensive and self-contained treatment of the probabilistic theory behind the risk-neutral valuation principle and its application to the pricing and hedging of financial derivatives. On the probabilistic side, both discrete- and continuous-time stochastic processes are treated, with special emphasis on martingale theory, stochastic integration and change-of-measure techniques. Based on firm probabilistic foundations, general properties of discrete- and continuous-time financial market models are discussed.