In Vitro Mutagenesis Protocols

In Vitro Mutagenesis Protocols

Author: Jeff Braman

Publisher: Springer Science & Business Media

Published: 2008-02-05

Total Pages: 284

ISBN-13: 1592591949

DOWNLOAD EBOOK

Hands-on researchers with proven track records describe in stepwise fashion their advanced mutagenesis techniques. The contributors focus on improvements to conventional site-directed mutagenesis, including a chapter on chemical site-directed mutagenesis, PCR-based mutagenesis and the modifications that allow high throughput mutagenesis experiments, and mutagenesis based on gene disruption (both in vitro- and in situ-based). Additional methods are provided for in vitro gene evolution; for gene disruption based on recombination, transposon, and casette mutagenesis; and for facilitating the introduction of multiple mutations. Time-tested and highly practical, the protocols in In Vitro Mutagenesis Protocols, 2nd Edition offer today's molecular biologists reliable and powerful techniques with which to illuminate the proteome.


In Vitro Mutagenesis

In Vitro Mutagenesis

Author: Andrew Reeves

Publisher: Humana

Published: 2016-10-06

Total Pages: 0

ISBN-13: 9781493964703

DOWNLOAD EBOOK

In vitro mutagenesis remains a critical experimental approach for investigating gene and protein function at the cellular level. This volume provides a wide variety of updated and novel approaches for performing in vitro mutagenesis using such methods as genome editing, transposon (Tn) mutagenesis, site-directed, and random mutagenesis. In Vitro Mutagenesis: Methods and Protocols guides readers through methods for gene and genome editing, practical bioinformatics approaches for identifying mutagenesis targets, and novel site-directed and random mutagenesis approaches aimed at gaining a better understanding of protein-protein and protein-cofactor interactions. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, In Vitro Mutagenesis: Methods and Protocols aims to provide a highly accessible and practical manual for current and future molecular biology researchers, from the beginner practitioner to the advanced investigator in fields such as molecular genetics, biochemistry, and biochemical and metabolic engineering.


In Vitro Mutagenesis Protocols

In Vitro Mutagenesis Protocols

Author: Michael K. Trower

Publisher: Springer Science & Business Media

Published: 1996

Total Pages: 412

ISBN-13:

DOWNLOAD EBOOK

In In Vitro Mutagenesis Protocols leading experts from industrial and academic laboratories describe easily reproducible procedures for site-directed and random mutagenesis. Site-directed protocols include those based on strand-selection, PCR (including "splicing by overlap extension" and the "megaprimer" procedure), the ligase chain reaction, positive antibiotic selection, unique restriction site elimination, gapped heteroduplex formation, and solid-phase capture with the biotin/ strepavidin system. Many techniques can be used with virtually any double-stranded DNA plasmid. The random mutagenesis protocols include methods based on PCR, degenerate oligonucleotides, cassette mutagenesis, nested deletion mutagenesis, and a specialized E. coli mutator strain. These invaluable protocols facilitate the study of gene regulation and structure/function relationships in proteins and permit modification of DNA sequences for purposes such as vector construction.


Protocols for Micropropagation of Woody Trees and Fruits

Protocols for Micropropagation of Woody Trees and Fruits

Author: S.Mohan Jain

Publisher: Springer Science & Business Media

Published: 2007-09-18

Total Pages: 548

ISBN-13: 1402063520

DOWNLOAD EBOOK

Micropropagation has become a reliable and routine approach for large-scale rapid plant multiplication, which is based on plant cell, tissue and organ culture on well defined tissue culture media under aseptic conditions. A lot of research efforts are being made to develop and refine micropropagation methods and culture media for large-scale plant multiplication of several number of plant species. However, many forest and fruit tree species still remain recalcitrant to in vitro culture and require highly specific culture conditions for plant growth and development. The recent challenges on plant cell cycle regulation and the presented potential molecular mechanisms of recalcitrance are providing excellent background for understanding on totipotency and what is more development of micropropagation protocols. For large-scale in vitro plant production the important attributes are the quality, cost effectiveness, maintenance of genetic fidelity, and long-term storage. The need for appropriate in vitro plant regeneration methods for woody plants, including both forest and fruit trees, is still overwhelming in order to overcome problems facing micropropagation such as somaclonal variation, recalcitrant rooting, hyperhydricity, polyphenols, loss of material during hardening and quality of plant material. Moreover, micropropagation may be utilized, in basic research, in production of virus-free planting material, cryopreservation of endangered and elite woody species, applications in tree breeding and reforestation.


Mutagenicity: Assays and Applications

Mutagenicity: Assays and Applications

Author: Ashutosh Kumar

Publisher: Academic Press

Published: 2017-09-26

Total Pages: 352

ISBN-13: 0128092602

DOWNLOAD EBOOK

Mutagenicity: Assays and Applications presents an extensive examination of the detection, assessment and future of mutagenicity, particularly as it concerns human health and the environment. Chapters focused on specific types of mutagens or testing methods for their detection collectively explore the current state of human and environmental mutagenesis, future perspectives and regulatory needs. The test procedures for measuring mutagenicity, their advantages and limitations are described with practical and procedural detail, along with their presentation and data processing aspects. It is an essential reference covering the breadth and depth of the field of mutagenicity studies and regulation. By providing both important introductory material and practical assays and applications, this book is useful to graduate students, academic and industry researchers and regulators at various stages of their careers, leading to improved risk assessment and regulation. - Presents an up-to-date and in-depth review of the current state of mutagenesis research - Draws upon the combined experience and expertise of an international group of highly respected editors and chapter authors - Provides an introduction to the concept of mutagenesis with particular consideration given to novel chemicals and materials


Somaclonal Variation and Induced Mutations in Crop Improvement

Somaclonal Variation and Induced Mutations in Crop Improvement

Author: S.M. Jain

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 615

ISBN-13: 9401591253

DOWNLOAD EBOOK

Genetic variability is an important parameter for plant breeders in any con ventional crop improvement programme. Very often the desired variation is un available in the right combination, or simply does not exist at all. However, plant breeders have successfully recombined the desired genes from cultivated crop gerrnplasm and related wild species by sexual hybridization, and have been able to develop new cultivars with desirable agronomie traits, such as high yield, disease, pest, and drought resistance. So far, conventional breeding methods have managed to feed the world's ever-growing population. Continued population growth, no further scope of expanding arable land, soil degradation, environ mental pollution and global warrning are causes of concern to plant biologists and planners. Plant breeders are under continuous pressure to improve and develop new cultivars for sustainable food production. However, it takes several years to develop a new cultivar. Therefore, they have to look for new technologies, which could be combined with conventional methods to create more genetic variability, and reduce the time in developing new cultivars, with early-maturity, and improved yield. The first report on induced mutation of a gene by HJ. Muller in 1927 was a major mi1estone in enhancing variation, and also indicated the potential applica tions of mutagenesis in plant improvement. Radiation sources, such as X-rays, gamma rays and fast neutrons, and chemical mutagens (e. g. , ethyl methane sulphonate) have been widely used to induce mutations.


Safety of Genetically Engineered Foods

Safety of Genetically Engineered Foods

Author: National Research Council

Publisher: National Academies Press

Published: 2004-07-08

Total Pages: 254

ISBN-13: 0309166152

DOWNLOAD EBOOK

Assists policymakers in evaluating the appropriate scientific methods for detecting unintended changes in food and assessing the potential for adverse health effects from genetically modified products. In this book, the committee recommended that greater scrutiny should be given to foods containing new compounds or unusual amounts of naturally occurring substances, regardless of the method used to create them. The book offers a framework to guide federal agencies in selecting the route of safety assessment. It identifies and recommends several pre- and post-market approaches to guide the assessment of unintended compositional changes that could result from genetically modified foods and research avenues to fill the knowledge gaps.


Manual on MUTATION BREEDING THIRD EDITION

Manual on MUTATION BREEDING THIRD EDITION

Author: Food and Agriculture Organization of the United Nations

Publisher: Food & Agriculture Org.

Published: 2018-10-09

Total Pages: 319

ISBN-13: 9251305269

DOWNLOAD EBOOK

This paper provides guidelines for new high-throughput screening methods – both phenotypic and genotypic – to enable the detection of rare mutant traits, and reviews techniques for increasing the efficiency of crop mutation breeding.


Yeast Protocols

Yeast Protocols

Author: Ivor Howell Evans

Publisher: Springer

Published: 1996

Total Pages: 433

ISBN-13: 9780896033191

DOWNLOAD EBOOK

Yeast Protocols contains many key techniques for studying the biology of yeasts at both the cellular and molecular levels. Working primarily from Saccharomyces cerevisiae, the expert contributors explain step-by-step how to successfully isolate, identify, and culture yeasts; the secrets of meiotic mapping; how to use PFGE in karyotyping and gene localization; the methods for purification and analysis of various cell components; and the construction and exploitation of genomic DNA clone banks. They also cover the latest methods for chromosome engineering, insertional mutagenesis by Ty elements, mRNA abundance and half-life measurements, the use of reporter gene systems, genotoxicity testing, and more. Yeast Protocols follows the widely applauded Humana Methods in Molecular Biology style: brief introductions putting the particular method in context, comprehensive lists of materials, cookbook style instructions, and troubleshooting notes to avoid common pitfalls and solve problems. The techniques can be used with confidence and success by both inexperienced newcomers and established researchers.


Gene Knockout Protocols

Gene Knockout Protocols

Author: Ralf Kühn

Publisher: Humana Press

Published: 2009-03-27

Total Pages: 0

ISBN-13: 9781934115268

DOWNLOAD EBOOK

Following the completion of the mouse and human genome sequences, a major challengeisthefunctionalcharacterizationofeverymammaliangeneandthedeciph- ing of their molecular interaction network. The mouse offers many advantages for the use of genetics to study human biology and disease, unmatched among other m- mals. Its development, body plan, physiology, behavior, and diseases have much in common, based on the fact that 99% of the human genes have a mouse ortholog. The investigation of gene function using mouse models is based on many years of tech- logical development. In the two decades since gene targeting in murine embryonic stem (ES) cells was first described by Mario Capecchi and colleagues, more than 3000 predesigned mouse mutants have been developed. To date, a variety of mouse mutagenesis techniques, either gene- or phenotype-driven, are used as systematic approaches. The availability of the genome sequence supports gene-driven approaches such as gene-trap and targeted mutagenesis in ES cells, allowing efficient and precise gene disruption. In combination with the use of site-specific DNA recombinases, in particular the Cre/loxP system, gene disruptioncan be directed to specific cell types in conditionalmousemutants. Furthermore,chemicalandtransposonmutagenesisofthe mouse genome enables us to perform phenotype-driven screens for the unbiased identification of phenotype–genotype correlations involved in models of human d- ease. Over the next several years, the mouse genome will be systematically altered, and the techniques for achieving predesigned manipulations will be constantly developed further and improved. The second edition of Gene Knockout Protocols brings together distinguished c- tributorswithextensiveexperienceinthegenetargetingandmousegeneticsfields.