In Situ Recovery & Remediation of Metals

In Situ Recovery & Remediation of Metals

Author: Drummond Earley III

Publisher: Society for Mining, Metallurgy & Exploration

Published: 2020-03-27

Total Pages: 168

ISBN-13: 0873354869

DOWNLOAD EBOOK

Current trends in mining are driving the demand for subsurface extraction technologies with low surface impacts that protect surface and ground water. Moreover, the necessity for sustainable mineral extraction technologies has increased as regulatory restrictions and technical challenges to traditional mining grow with production from deeper and deeper remaining metal resources. This book provides a state-of-the-art synopsis of in situ metal recovery and remediation technologies based on both research and commercial projects. In situ recovery uses fluid-based metal dissolution and recovery to extract one or more commodities from a largely intact rock mass using similar processes that create ore deposits. The fluid is circulated through ore by gravity and/or pumps using injection and recovery wells. A processing facility is usually established at the surface of the operation to extract the commodity of interest. The barren fluid is then recirculated back into the recovery circuit. In situ remediation uses similar wellfield technology and chemical processes to stabilize metal contaminants by injecting agents that form stable solids or less toxic species when combined with a contaminant. The fluid depleted in the stabilizing agent is then pumped back to the surface and regenerated. In situ mining or recovery has been successfully applied to several commodities, including uranium, sulfur, evaporites, and copper, which have favorable chemical properties and deposit types for in situ recovery.


New Trends in Removal of Heavy Metals from Industrial Wastewater

New Trends in Removal of Heavy Metals from Industrial Wastewater

Author: Maulin P. Shah

Publisher: Elsevier

Published: 2021-04-23

Total Pages: 780

ISBN-13: 0128231084

DOWNLOAD EBOOK

New Trends in Removal of Heavy Metals from Industrial Wastewater covers the applicable technologies relating to the removal of heavy metals from wastewater and new and emerging trends in the field, both at the laboratory and industrial scale. Sections explore new environmentally friendly technologies, the principles of sustainable development, the main factors contributing to heavy metal removal from wastewater, methods and procedures, materials (especially low-cost materials originated from industrial and agricultural waste), management of wastewater containing heavy metals and wastewater valorization, recycling, environmental impact, and wastewater policies for post heavy metal removal. This book is an advanced and updated vision of existing heavy metal removal technologies with their limitations and challenges and their potential application to remove heavy metals/environmental pollutants through advancements in bioremediation. Finally, sections also cover new trends and advances in environmental bioremediation with recent developments in this field by an application of chemical/biochemical and environmental biotechnology. - Outlines the fate and occurrence of heavy metals in Wastewater Treatment Plants (WWTPs) and potential approaches for their removal - Describes the techniques currently available for removing heavy metals from wastewater - Discusses the emerging technologies in heavy metal removal - Covers biological treatments to remove heavy metals - Includes the valorization of heavy metal containing wastewater


In Situ Recovery and Remediation of Metals

In Situ Recovery and Remediation of Metals

Author: DRUMMOND EARLEY III.

Publisher:

Published: 2020

Total Pages: 168

ISBN-13: 9780873354875

DOWNLOAD EBOOK

This book provides a state-of-the-art synopsis of in situ metal recovery and remediation technologies based on both research and commercial projects. In situ recovery uses fluid-based metal dissolution and recovery to extract one or more commodities from a largely intact rock mass using similar processes that create ore deposits.


Soil Bioremediation

Soil Bioremediation

Author: Javid A. Parray

Publisher: John Wiley & Sons

Published: 2021-03-22

Total Pages: 372

ISBN-13: 1119547954

DOWNLOAD EBOOK

SOIL BIOREMEDIATION A practical guide to the environmentally sustainable bioremediation of soil Soil Bioremediation: An Approach Towards Sustainable Technology provides the first comprehensive discussion of sustainable and effective techniques for soil bioremediation involving microbes. Presenting established and updated research on emerging trends in bioremediation, this book provides contributions from both experimental and numerical researchers who provide reports on significant field trials. Soil Bioremediation instructs the reader on several different environmentally friendly bioremediation techniques, including: Bio-sorption Bio-augmentation Bio-stimulation Emphasizing molecular approaches and biosynthetic pathways of microbes, this one-of-a-kind reference focuses heavily on the role of microbes in the degradation and removal of xenobiotic substances from the environment and presents a unique management and conservation perspective in the field of environmental microbiology. Soil Bioremediation is perfect for undergraduate students in the fields of environmental science, microbiology, limnology, freshwater ecology and microbial biotechnology. It is also invaluable for researchers and scientists working in the areas of environmental science, environmental microbiology, and waste management.


Bioelectrochemical Systems

Bioelectrochemical Systems

Author: Korneel Rabaey

Publisher: IWA Publishing

Published: 2009-12-01

Total Pages: 525

ISBN-13: 184339233X

DOWNLOAD EBOOK

In the context of wastewater treatment, Bioelectrochemical Systems (BESs) have gained considerable interest in the past few years, and several BES processes are on the brink of application to this area. This book, written by a large number of world experts in the different sub-topics, describes the different aspects and processes relevant to their development. Bioelectrochemical Systems (BESs) use micro-organisms to catalyze an oxidation and/or reduction reaction at an anodic and cathodic electrode respectively. Briefly, at an anode oxidation of organic and inorganic electron donors can occur. Prime examples of such electron donors are waste organics and sulfides. At the cathode, an electron acceptor such as oxygen or nitrate can be reduced. The anode and the cathode are connected through an electrical circuit. If electrical power is harvested from this circuit, the system is called a Microbial Fuel Cell; if electrical power is invested, the system is called a Microbial Electrolysis Cell. The overall framework of bio-energy and bio-fuels is discussed. A number of chapters discuss the basics – microbiology, microbial ecology, electrochemistry, technology and materials development. The book continues by highlighting the plurality of processes based on BES technology already in existence, going from wastewater based reactors to sediment based bio-batteries. The integration of BESs into existing water or process lines is discussed. Finally, an outlook is provided of how BES will fit within the emerging biorefinery area.


Phytoremediation of Contaminated Soil and Water

Phytoremediation of Contaminated Soil and Water

Author: Norman Terry

Publisher: CRC Press

Published: 2020-11-25

Total Pages: 414

ISBN-13: 9781439822654

DOWNLOAD EBOOK

Phytoremediation is an exciting, new technology that utilizes metal-accumulating plants to rid soil of heavy metal and radionuclides. Hyperaccumulation plants are an appealing and economical alternative to current methods of soil recovery. Phytoremediation of Contaminated Soil and Water is the most thorough literary examination of the subject available today. The successful implementation of phytoremediation depends on identifying plant material that is well adapted to specific toxic sites. Gentle remediation is then applied in situ, or at the contamination site. No soil excavation or transport is necessary. This severely contains the potential risk of the pollutants entering the food chain. And it's cost effective. The progress of modern man has created many sites contaminated with heavy metals. The effected land is toxic to plants and animals , which creates considerable public interest in remediation. But the commonly used remedies are ex situ, which poses an expensive dilemma and an even greater threat. Phytoremediation offers the prospect of a cheaper and healthier way to deal with this problem. Read Phytoremediation of Contaminated Soil and Water to learn just how far this burgeoning technology has developed.


Environmental Chemistry

Environmental Chemistry

Author: Eric Lichtfouse

Publisher: Springer Science & Business Media

Published: 2005

Total Pages: 818

ISBN-13: 9783540228608

DOWNLOAD EBOOK

This book describes advances in this new, fast developing science, which seeks to decipher fundamental mechanisms ruling the behaviour in water, soils, atmosphere, food and living organisms of toxic metals, fossil fuels, pesticides and other organic pollutants. Sections on eco-toxicology, green chemistry, and analytical chemistry round out this thorough survey of conditions and analytical techniques in an emerging specialty.


Sustainable Heavy Metal Remediation

Sustainable Heavy Metal Remediation

Author: Eldon R. Rene

Publisher: Springer

Published: 2017-07-24

Total Pages: 292

ISBN-13: 331958622X

DOWNLOAD EBOOK

This book covers the principles, underlying mechanisms, thermodynamic functions, kinetics and modeling aspects of sustainable technologies, particularly from the standpoint of applying physical, chemical and biological processes for the treatment of wastewater polluted with heavy metals. Particular emphasis has been given to technologies that are based on adsorption, electro-coagulation, bio-precipitation, bio-solubilization, phytoremediation and microbial electrolysis. Metal contamination in the environment is one of the persisting global issues. The adverse health effects of heavy metals on human beings and its impact on the environment has been well-documented. Several physico-chemical and biological technologies have been successfully implemented to prevent and control the discharge of industrial heavy metal emissions. On the contrary, metal resource depletion has also accelerated dramatically during the 20th century due to rapid advances in industrial engineering and medical sciences, which requires large amount of raw materials. To meet the global metal demand, in recent years, novel research lines have started to focus on the recovery of metals from metal contaminated waste streams. In order to conflate both metal removal and recovery, new technologies have been successfully tested, both at the lab and pilot-scale. The target audience of this book primarily comprises of research experts, practicing engineers in the field of environmental/chemical technology and graduate students.