Using Classroom Assessment to Improve Student Learning

Using Classroom Assessment to Improve Student Learning

Author: Anne M. Collins

Publisher:

Published: 2011

Total Pages: 138

ISBN-13: 9780873536608

DOWNLOAD EBOOK

Linking assessment to everday classroom instruction requires a shift in both thinking and practise. For many, the term assessment simply means grade. Using Classroom Assessment to Improve Student Learning shows how teachers can move away from using tests, letter or numerical grades or passing or failing as evidence of student learning to creating a rich classroom environment that is conducive to effective formative assessment.


Improving Indicators of the Quality of Science and Mathematics Education in Grades K-12

Improving Indicators of the Quality of Science and Mathematics Education in Grades K-12

Author: National Research Council

Publisher: National Academies Press

Published: 1988-02-01

Total Pages: 231

ISBN-13: 0309037409

DOWNLOAD EBOOK

This book presents a carefully developed monitoring system to track the progress of mathematics and science education, particularly the effects of ongoing efforts to improve students' scientific knowledge and mathematics competency. It describes an improved series of indicators to assess student learning, curriculum quality, teaching effectiveness, student behavior, and financial and leadership support for mathematics and science education. Of special interest is a critical review of current testing methods and their use in probing higher-order skills and evaluating educational quality.


Learning and Understanding

Learning and Understanding

Author: National Research Council

Publisher: National Academies Press

Published: 2002-09-06

Total Pages: 589

ISBN-13: 0309074401

DOWNLOAD EBOOK

This book takes a fresh look at programs for advanced studies for high school students in the United States, with a particular focus on the Advanced Placement and the International Baccalaureate programs, and asks how advanced studies can be significantly improved in general. It also examines two of the core issues surrounding these programs: they can have a profound impact on other components of the education system and participation in the programs has become key to admission at selective institutions of higher education. By looking at what could enhance the quality of high school advanced study programs as well as what precedes and comes after these programs, this report provides teachers, parents, curriculum developers, administrators, college science and mathematics faculty, and the educational research community with a detailed assessment that can be used to guide change within advanced study programs.


The Knowledge Gap

The Knowledge Gap

Author: Natalie Wexler

Publisher: Penguin

Published: 2020-08-04

Total Pages: 354

ISBN-13: 0735213569

DOWNLOAD EBOOK

The untold story of the root cause of America's education crisis--and the seemingly endless cycle of multigenerational poverty. It was only after years within the education reform movement that Natalie Wexler stumbled across a hidden explanation for our country's frustrating lack of progress when it comes to providing every child with a quality education. The problem wasn't one of the usual scapegoats: lazy teachers, shoddy facilities, lack of accountability. It was something no one was talking about: the elementary school curriculum's intense focus on decontextualized reading comprehension "skills" at the expense of actual knowledge. In the tradition of Dale Russakoff's The Prize and Dana Goldstein's The Teacher Wars, Wexler brings together history, research, and compelling characters to pull back the curtain on this fundamental flaw in our education system--one that fellow reformers, journalists, and policymakers have long overlooked, and of which the general public, including many parents, remains unaware. But The Knowledge Gap isn't just a story of what schools have gotten so wrong--it also follows innovative educators who are in the process of shedding their deeply ingrained habits, and describes the rewards that have come along: students who are not only excited to learn but are also acquiring the knowledge and vocabulary that will enable them to succeed. If we truly want to fix our education system and unlock the potential of our neediest children, we have no choice but to pay attention.


Designing Mathematics or Science Curriculum Programs

Designing Mathematics or Science Curriculum Programs

Author: National Research Council

Publisher: National Academies Press

Published: 1999-11-15

Total Pages: 70

ISBN-13: 0309185629

DOWNLOAD EBOOK

With the publication of the National Science Education Standards and the National Council of Teachers of Mathematics' Curriculum and Evaluation Standards for School Mathematics, a clear set of goals and guidelines for achieving literacy in mathematics and science was established. Designing Mathematics or Science Curriculum Programs has been developed to help state- and district-level education leaders create coherent, multi-year curriculum programs that provide students with opportunities to learn both mathematics and science in a connected and cumulative way throughout their schooling. Researchers have confirmed that as U.S. students move through the grade levels, they slip further and further behind students of other nations in mathematics and science achievement. Experts now believe that U.S. student performance is hindered by the lack of coherence in the mathematics and science curricula in many American schools. By structuring curriculum programs that capitalize on what students have already learned, the new concepts and processes that they can learn will be richer, more complex, and at a higher level. Designing Mathematics or Science Curriculum Programs outlines: Components of effective mathematics and science programs. Criteria by which these components can be judged. A process for developing curriculum that is structured, focused, and coherent. Perhaps most important, this book emphasizes the need for designing curricula across the entire 13-year span that our children spend in elementary and secondary school as a way to improve the quality of education. Ultimately, it will help state and district educators use national and state standards to design or re-build mathematics and science curriculum programs that develop new ideas and skills based on earlier onesâ€"from lesson to lesson, unit to unit, year to year. Anyone responsible for designing or influencing mathematics or science curriculum programs will find this guide valuable.


Professional Standards for Teaching Mathematics

Professional Standards for Teaching Mathematics

Author: National Council of Teachers of Mathematics. Commission on Teaching Standards for School Mathematics

Publisher: National Council of Teachers of Mathematics

Published: 1991

Total Pages: 214

ISBN-13: 9780873533072

DOWNLOAD EBOOK

Authorized Teacher resource for Mathematics, K-12 in Alberta. 1991-2001.


Handbook of Research Design in Mathematics and Science Education

Handbook of Research Design in Mathematics and Science Education

Author: Anthony Edward Kelly

Publisher: Routledge

Published: 2012-10-12

Total Pages: 984

ISBN-13: 1135705828

DOWNLOAD EBOOK

The Handbook of Research Design in Mathematics and Science Education is based on results from an NSF-supported project (REC 9450510) aimed at clarifying the nature of principles that govern the effective use of emerging new research designs in mathematics and science education. A primary goal is to describe several of the most important types of research designs that: * have been pioneered recently by mathematics and science educators; * have distinctive characteristics when they are used in projects that focus on mathematics and science education; and * have proven to be especially productive for investigating the kinds of complex, interacting, and adapting systems that underlie the development of mathematics or science students and teachers, or for the development, dissemination, and implementation of innovative programs of mathematics or science instruction. The volume emphasizes research designs that are intended to radically increase the relevance of research to practice, often by involving practitioners in the identification and formulation of the problems to be addressed or in other key roles in the research process. Examples of such research designs include teaching experiments, clinical interviews, analyses of videotapes, action research studies, ethnographic observations, software development studies (or curricula development studies, more generally), and computer modeling studies. This book's second goal is to begin discussions about the nature of appropriate and productive criteria for assessing (and increasing) the quality of research proposals, projects, or publications that are based on the preceding kind of research designs. A final objective is to describe such guidelines in forms that will be useful to graduate students and others who are novices to the fields of mathematics or science education research. The NSF-supported project from which this book developed involved a series of mini conferences in which leading researchers in mathematics and science education developed detailed specifications for the book, and planned and revised chapters to be included. Chapters were also field tested and revised during a series of doctoral research seminars that were sponsored by the University of Wisconsin's OERI-supported National Center for Improving Student Learning and Achievement in Mathematics and Science. In these seminars, computer-based videoconferencing and www-based discussion groups were used to create interactions in which authors of potential chapters served as "guest discussion leaders" responding to questions and comments from doctoral students and faculty members representing more than a dozen leading research universities throughout the USA and abroad. A Web site with additional resource materials related to this book can be found at http://www.soe.purdue.edu/smsc/lesh/ This internet site includes directions for enrolling in seminars, participating in ongoing discussion groups, and submitting or downloading resources which range from videotapes and transcripts, to assessment instruments or theory-based software, to publications or data samples related to the research designs being discussed.


Assessment Standards for School Mathematics

Assessment Standards for School Mathematics

Author: National Council of Teachers of Mathematics

Publisher: National Council of Teachers of Mathematics

Published: 1995

Total Pages: 120

ISBN-13:

DOWNLOAD EBOOK

This document was created because of the need for new assessment strategies and practices to be developed to enable teachers and others to assess students' performance in a manner that reflects the NCTM's reform vision for school mathematics. Instead of assuming that the purpose of assessment is to rank students on a particular trait, the new approach assumes that high public expectations can be set that every student can strive for and achieve, that different performances can and will meet agreed-on expectations, and that teachers can be fair and consistent judges of diverse student performances. The first sections of the document discuss six mathematics assessment standards: (1) The Mathematics Standard, (2) The Learning Standard, (3) The Equity Standard, (4) The Openness Standard, (5) The Inferences Standard, and (6) The Coherence Standard. The use of the assessment standards is then discussed in the context of different purposes such as monitoring students' progress, making instructional decisions, evaluating students' achievement, and evaluating programs. The next section discusses what should happen next with regard to mathematical assessment. The document concludes with a glossary and a selected assessment bibliography with 116 citations. Contains 28 references. (MKR)


Building Thinking Classrooms in Mathematics, Grades K-12

Building Thinking Classrooms in Mathematics, Grades K-12

Author: Peter Liljedahl

Publisher: Corwin Press

Published: 2020-09-28

Total Pages: 454

ISBN-13: 1544374844

DOWNLOAD EBOOK

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.