Noise Suppression Methods for Robust Speech Processing

Noise Suppression Methods for Robust Speech Processing

Author: Steven F. Boll

Publisher:

Published: 1980

Total Pages: 53

ISBN-13:

DOWNLOAD EBOOK

Robust speech processing in practical operating environments requires effective environmental and processor noise suppression. This report describes the technical findings and accomplishments during the reporting period for the research program funded to develop real-time, compressed speech analysis-synthesis algorithms whose performance is invariant under signal contamination. Fulfillment of this requirement is necessary to insure reliable secure compressed speech transmission within realistic military command and control environments. Overall contributions resulting from this research program include the understanding of how environmental noise degrades narrow band, coded speech, development of appropriate real-time noise suppression algorithms, and development of speech parameter identification methods that consider signal contamination as a fundmental element in the estimation process. This report describes the research and results in the areas of noise suppression using the dual input adaptive noise cancellation articulation rate change techniques, spectral subtraction and a description of an experiment which demonstrated that the spectral substraction noise suppression algorithm can improve the intelligibility of 2400 bps, LPC-10 coded, helicopter speech by 10.6 points. In addition summaries are included of prior studies in Constant-Q signal analysis and synthesis, perceptual modelling, speech activity detection, and pole-zero modelling of noisy signals. Three recent studies in speech modelling using the critical band analysis-synthesis transform and using splines are then presented. Finally a list a major publications generated under this contract is given. (Author).


Dual-microphone and Binaural Noise Reduction Techniques for Improved Speech Intelligibility by Hearing Aid Users

Dual-microphone and Binaural Noise Reduction Techniques for Improved Speech Intelligibility by Hearing Aid Users

Author: Nima Yousefian Jazi

Publisher:

Published: 2013

Total Pages: 218

ISBN-13:

DOWNLOAD EBOOK

Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the algorithms are also presented to show that the proposed methods can be potential candidates for future use in commercial hearing aids and cochlear implant devices.


Real-Time Digital Signal Processing

Real-Time Digital Signal Processing

Author: Sen M. Kuo

Publisher: John Wiley & Sons

Published: 2013-08-05

Total Pages: 532

ISBN-13: 1118706684

DOWNLOAD EBOOK

Combines both the DSP principles and real-time implementations and applications, and now updated with the new eZdsp USB Stick, which is very low cost, portable and widely employed at many DSP labs. Real-Time Digital Signal Processing introduces fundamental digital signal processing (DSP) principles and will be updated to include the latest DSP applications, introduce new software development tools and adjust the software design process to reflect the latest advances in the field. In the 3rd edition of the book, the key aspect of hands-on experiments will be enhanced to make the DSP principles more interesting and directly interact with the real-world applications. All of the programs will be carefully updated using the most recent version of software development tools and the new TMS320VC5505 eZdsp USB Stick for real-time experiments. Due to its lower cost and portability, the new software and hardware tools are now widely used in university labs and in commercial industrial companies to replace the older and more expensive generation. The new edition will have a renewed focus on real-time applications and will offer step-by-step hands-on experiments for a complete design cycle starting from floating-point C language program to fixed-point C implementation, code optimization using INTRINSICS, and mixed C-and-assembly programming on fixed-point DSP processors. This new methodology enables readers to concentrate on learning DSP fundamentals and innovative applications by relaxing the intensive programming efforts, namely, the traditional DSP assembly coding efforts. The book is organized into two parts; Part One introduces the digital signal processing principles and theories, and Part Two focuses on practical applications. The topics for the applications are the extensions of the theories in Part One with an emphasis placed on the hands-on experiments, systematic design and implementation approaches. The applications provided in the book are carefully chosen to reflect current advances of DSP that are of most relevance for the intended readership. Combines both the DSP principles and real-time implementations and applications using the new eZdsp USB Stick, which is very low cost, portable and widely employed at many DSP labs is now used in the new edition Places renewed emphasis on C-code experiments and reduces the exercises using assembly coding; effective use of C programming, fixed-point C code and INTRINSICS will become the main focus of the new edition. Updates to application areas to reflect latest advances such as speech coding techniques used for next generation networks (NGN), audio coding with surrounding sound, wideband speech codec (ITU G.722.2 Standard), fingerprint for image processing, and biomedical signal processing examples. Contains new addition of several projects that can be used as semester projects; as well as new many new real-time experiments using TI’s binary libraries – the experiments are prepared with flexible interface and modular for readers to adapt and modify to create other useful applications from the provided basic programs. Consists of more MATLAB experiments, such as filter design, algorithm evaluation, proto-typing for C-code architecture, and simulations to aid readers to learn DSP fundamentals. Includes supplementary material of program and data files for examples, applications, and experiments hosted on a companion website. A valuable resource for Postgraduate students enrolled on DSP courses focused on DSP implementation & applications as well as Senior undergraduates studying DSP; engineers and programmers who need to learn and use DSP principles and development tools for their projects.


Speech and Audio Processing in Adverse Environments

Speech and Audio Processing in Adverse Environments

Author: Eberhard Hänsler

Publisher: Springer

Published: 2010-11-25

Total Pages: 0

ISBN-13: 9783642089534

DOWNLOAD EBOOK

Users of signal processing systems are never satis?ed with the system they currently use. They are constantly asking for higher quality, faster perf- mance, more comfort and lower prices. Researchers and developers should be appreciative for this attitude. It justi?es their constant e?ort for improved systems. Better knowledge about biological and physical interrelations c- ing along with more powerful technologies are their engines on the endless road to perfect systems. This book is an impressive image of this process. After “Acoustic Echo 1 and Noise Control” published in 2004 many new results lead to “Topics in 2 Acoustic Echo and Noise Control” edited in 2006 . Today – in 2008 – even morenew?ndingsandsystemscouldbecollectedinthisbook.Comparingthe contributions in both edited volumes progress in knowledge and technology becomesclearlyvisible:Blindmethodsandmultiinputsystemsreplace“h- ble” low complexity systems. The functionality of new systems is less and less limited by the processing power available under economic constraints. The editors have to thank all the authors for their contributions. They cooperated readily in our e?ort to unify the layout of the chapters, the ter- nology, and the symbols used. It was a pleasure to work with all of them. Furthermore, it is the editors concern to thank Christoph Baumann and the Springer Publishing Company for the encouragement and help in publi- ing this book.