Enhancing Mathematics Understanding through Visualization: The Role of Dynamical Software

Enhancing Mathematics Understanding through Visualization: The Role of Dynamical Software

Author: Habre, Samer

Publisher: IGI Global

Published: 2013-05-31

Total Pages: 298

ISBN-13: 1466640510

DOWNLOAD EBOOK

Mathematics is, by its very nature, an abstract discipline. However, many students learn best by thinking in terms of tangible constructs. Enhancing Mathematics Understanding through Visualization: The Role of Dynamical Software brings these conflicting viewpoints together by offering visual representations as a method of mathematics instruction. The book explores the role of technology in providing access to multiple representations of concepts, using software applications to create a rich environment in which a student’s understanding of mathematical concepts can flourish. Both students and instructors of mathematics at the university level will use this book to implement various novel techniques for the delivery of mathematical concepts in their classrooms. This book is part of the Research Essential collection.


Pulsed Laser-Induced Nanostructures in Liquids for Energy and Environmental Applications

Pulsed Laser-Induced Nanostructures in Liquids for Energy and Environmental Applications

Author: Myong Yong Choi

Publisher: Elsevier

Published: 2024-07-19

Total Pages: 338

ISBN-13: 0443133808

DOWNLOAD EBOOK

Pulsed Laser Induced Nanostructures in Liquids for Energy and Environmental Applications covers fundamental insights on the mechanism of pulsed laser techniques by considering various experimental conditions to accelerate hypotheses that are appropriate for the production of efficient nanomaterials. In this book, readers will learn about the major advancements in the field of pulsed laser technologies during the past decades, current applications, and future impacts of pulsed laser technologies. This book provides a comprehensive overview of the development of nanostructured catalytic materials via pulsed laser techniques, their use as energy, environment-related applications and their present trend in the industry and market. It also highlights the latest advances related to the application of these nanostructured materials produced via pulsed laser in liquid techniques in various energy (supercapacitor, batteries, and hydrogen production) and environmental remediation (wastewater treatment and conversion of waste into value-added product) processes. Recent progress on several kinds of both photo and electroactive nanomaterials is reviewed, and essential aspects which govern catalytic behaviors, and the corresponding stability, are discussed. - Provides basic principles of pulsed laser–matter interaction, with a focus on the resulting material responses compared to other conventional techniques and state-of-the-art applications - Offers comprehensive coverage of pulsed laser induced nanomaterials and their potential energy and environmental applications - Examines the properties of pulsed laser induced nanostructures that make them so adaptable


Biomedical Signal and Image Processing

Biomedical Signal and Image Processing

Author: Kayvan Najarian

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 411

ISBN-13: 1439870349

DOWNLOAD EBOOK

Written for senior-level and first year graduate students in biomedical signal and image processing, this book describes fundamental signal and image processing techniques that are used to process biomedical information. The book also discusses application of these techniques in the processing of some of the main biomedical signals and images, such as EEG, ECG, MRI, and CT. New features of this edition include the technical updating of each chapter along with the addition of many more examples, the majority of which are MATLAB based.


Magnetic Resonance Imaging

Magnetic Resonance Imaging

Author: Robert W. Brown

Publisher: John Wiley & Sons

Published: 2014-06-23

Total Pages: 976

ISBN-13: 0471720852

DOWNLOAD EBOOK

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.


Magnetic Resonance Image Reconstruction

Magnetic Resonance Image Reconstruction

Author: Mehmet Akcakaya

Publisher: Academic Press

Published: 2022-11-04

Total Pages: 518

ISBN-13: 012822746X

DOWNLOAD EBOOK

Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction


Index Medicus

Index Medicus

Author:

Publisher:

Published: 2001-12

Total Pages: 2106

ISBN-13:

DOWNLOAD EBOOK

Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.


Principles of Magnetic Resonance Imaging

Principles of Magnetic Resonance Imaging

Author: Zhi-Pei Liang

Publisher: Wiley-IEEE Press

Published: 2000

Total Pages: 442

ISBN-13:

DOWNLOAD EBOOK

In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.