The first premise of this book is that farmers need access to options for improving their situation. In agricultural terms, these options might be manage ment alternatives or different crops to grow, that can stabilize or increase household income, that reduce soil degradation and dependence on off-farm inputs, or that exploit local market opportunities. Farmers need a facilitating environment, in which affordable credit is available if needed, in which policies are conducive to judicious management of natural resources, and in which costs and prices of production are stable. Another key ingredient of this facilitating environment is information: an understanding of which options are viable, how these operate at the farm level, and what their impact may be on the things that farmers perceive as being important. The second premise is that systems analysis and simulation have an impor tant role to play in fostering this understanding of options, traditional field experimentation being time-consuming and costly. This book summarizes the activities of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) project, an international initiative funded by the United States Agency for International Development (USAID). IBSNAT was an attempt to demonstrate the effectiveness of understanding options through systems analysis and simulation for the ultimate benefit of farm households in the tropics and subtropics. The idea for the book was first suggested at one of the last IBSNAT group meetings held at the University of Hawaii in 1993.
Environmental insults such as extremes of temperature, extremes of water status, and deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to manipulate plant performance that is better suited to withstand these stresses. This book searches for possible answers to several basic questions related to plant responses towards abiotic stresses. Synthesizing developments in plant stress biology, the book offers strategies that can be used in breeding, including genomic, molecular, physiological, and biotechnological approaches that have the potential to develop resilient plants and improve crop productivity worldwide.
Wild Germplasm for Genetic Improvement in Crop Plants addresses the need for an integrated reference on a wide variety of crop plants, facilitating comparison and contrast, as well as providing relevant relationships for future research and development. The book presents the genetic and natural history value of wild relatives, covers what wild relatives exist, explores the existing knowledge regarding specific relatives and the research surrounding them and identifies knowledge gaps. As understanding the role of crop wild relatives in plant breeding expands the genetic pool for abiotic and biotic stress resistance, this is an ideal reference on this important topic. - Provides a single-volume resource to important crops for accessible comparison and research - Explores both conventional and molecular approaches to breeding for targeted traits and allows for expanded genetic variability - Guides the development of hybrids for germplasm with increased tolerance to biotic and abiotic stresses
This Food Policy Report presents research results that quantify the climate-change impacts mentioned above, assesses the consequences for food security, and estimates the investments that would offset the negative consequences for human well-being.
This book analyzes and elucidates the nature of predictable changes on the world's agricultural system caused by the so-called greenhouse effect. Its aim is to educate students at the undergraduate level about how the climatic factors affecting agriculture may be modified in the future, andwhat practical adaptations might be undertaken to prevent or overcome any possible adverse impacts on our ability to feed the world's population. The book draws on several complimentary disciplines, including atmospheric science, hydrology, soil science, crop physiology, and resource economics, andintegrates the relevant aspects of these fields.
Unless action is taken now to make agriculture more sustainable, productive and resilient, climate change impacts will seriously compromise food production in countries and regions that are already highly food-insecure. The Paris Agreement, adopted in December 2015, represents a new beginning in the global effort to stabilize the climate before it is too late. It recognizes the importance of food security in the international response to climate change, as reflected by many countries prominent focus on the agriculture sector in their planned contributions to adaptation and mitigation. To help put those plans into action, this report identifies strategies, financing opportunities, and data and information needs. It also describes transformative policies and institutions that can overcome barriers to implementation. The State of Food and Agriculture is produced annually. Each edition contains an overview of the current global agricultural situation, as well as more in-depth coverage of a topical theme."