An understanding of the complex workings of the immune system is essential for all surgeons. Immune responses play a crucial part in the way human body reacts to infection and trauma. Immunology for Surgeons contains a high-level discussion of this difficult clinical area. The text looks at tumor immunobiology and immunotherapy as well as the worldwide results of various clinical trials. The topics discussed focus on relevant immunological and molecular biological trends for future treatment of complex surgical disease. The main objective of the text is to render a difficult area accessible for the postgraduate surgical trainee and established surgeon who is interested in immunology.
This book is open access under a CC BY 4.0 license. This textbook, endorsed by the European Society for Blood and Marrow Transplantation (EBMT), provides adult and paediatric nurses with a full and informative guide covering all aspects of transplant nursing, from basic principles to advanced concepts. It takes the reader on a journey through the history of transplant nursing, including essential and progressive elements to help nurses improve their knowledge and benefit the patient experience, as well as a comprehensive introduction to research and auditing methods. This new volume specifically intended for nurses, complements the ESH-EBMT reference title, a popular educational resource originally developed in 2003 for physicians to accompany an annual training course also serving as an educational tool in its own right. This title is designed to develop the knowledge of nurses in transplantation. It is the first book of its kind specifically targeted at nurses in this specialist field and acknowledges the valuable contribution that nursing makes in this area. This volume presents information that is essential for the education of nurses new to transplantation, while also offering a valuable resource for more experienced nurses who wish to update their knowledge.
The International Society of Oxygen Transport to Tissue (ISOTT) was founded in 1973 to provide a forum for bioengineers, basic scientists, physiologists, and physicians to discuss new data, original theories, new interpretations of old data, and new technologies for the measurement of oxygen. At each annual meeting all posters are presented orally along with plenary lectures, and all presentations are given in a general session attended by everyone. Each meeting has had a specific focus, ranging from neonatology to physical chemistry to cancer biology. The Society has helped to build many careers, through opportunities to meet leaders in the field, and through awards made to young physicians and scientists. The Society also, through cross fertilization of ideas and scientific comradery, has inspired many breakthroughs in clinical medicine that now benefit mankind. I find myself president of the society after having been a winner of the Melvin Knisely Award for young scientists, in 1991. The 2003 meeting emphasized the role of oxygen and oxygen measurement in tumor growth, metastasis, physiology, and treatment resistance. Additionally, however, completely novel approaches to measurement of tissue oxygen were presented (notably work by Dr. Takahashi) and molecular methods for estimating tissue oxygen were evaluated. Papers discussing other aspects of oxygen measurement and pathophysiology were presented including in vivo ESR spectroscopy (notably including Dr. Swartz and colleagues), exercise physiology, organ transplant outcome (discussed by Dr. Cicco, our 2004 president), circulatory physiology, and cerebral oxygenation (notably including Dr. Chance).
The interplay between tumors and their immunologic microenvironment is complex, difficult to decipher, but its understanding is of seminal importance for the development of novel prognostic markers and therapeutic strategies. The present review discusses tumor-immune interactions in several human cancers that illustrate various aspects of this complexity and proposes an integrated scheme of the impact of local immune reactions on clinical outcome. Current active immunotherapy trials have shown durable tumor regressions in a fraction of patients. However, clinical efficacy of current vaccines is limited, possibly because tumors skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumor microenvironment.
Provides a summary of glioma biology, genetics and management, based on the world-leading Duke University Preston Robert Tisch Brain Tumor Center program.
In this book, leading experts in cancer immunotherapy join forces to provide a comprehensive guide that sets out the main principles of oncoimmunology and examines the latest advances and their implications for clinical practice, focusing in particular on drugs with FDA/EMA approvals and breakthrough status. The aim is to deliver a landmark educational tool that will serve as the definitive reference for MD and PhD students while also meeting the needs of established researchers and healthcare professionals. Immunotherapy-based approaches are now inducing long-lasting clinical responses across multiple histological types of neoplasia, in previously difficult-to-treat metastatic cancers. The future challenges for oncologists are to understand and exploit the cellular and molecular components of complex immune networks, to optimize combinatorial regimens, to avoid immune-related side effects, and to plan immunomonitoring studies for biomarker discovery. The editors hope that this book will guide future and established health professionals toward the effective application of cancer immunology and immunotherapy and contribute significantly to further progress in the field.
The book addresses controversies related to the origins of cancer and provides solutions to cancer management and prevention. It expands upon Otto Warburg's well-known theory that all cancer is a disease of energy metabolism. However, Warburg did not link his theory to the "hallmarks of cancer" and thus his theory was discredited. This book aims to provide evidence, through case studies, that cancer is primarily a metabolic disease requring metabolic solutions for its management and prevention. Support for this position is derived from critical assessment of current cancer theories. Brain cancer case studies are presented as a proof of principle for metabolic solutions to disease management, but similarities are drawn to other types of cancer, including breast and colon, due to the same cellular mutations that they demonstrate.