Introduction to Machine Learning

Introduction to Machine Learning

Author: Ethem Alpaydin

Publisher: MIT Press

Published: 2014-08-22

Total Pages: 639

ISBN-13: 0262028182

DOWNLOAD EBOOK

Introduction -- Supervised learning -- Bayesian decision theory -- Parametric methods -- Multivariate methods -- Dimensionality reduction -- Clustering -- Nonparametric methods -- Decision trees -- Linear discrimination -- Multilayer perceptrons -- Local models -- Kernel machines -- Graphical models -- Brief contents -- Hidden markov models -- Bayesian estimation -- Combining multiple learners -- Reinforcement learning -- Design and analysis of machine learning experiments.


Dictionary of Acronyms and Technical Abbreviations

Dictionary of Acronyms and Technical Abbreviations

Author: Jakob Vlietstra

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 703

ISBN-13: 1447102630

DOWNLOAD EBOOK

This Dictionary covers information and communication technology (ICT), including hardware and software; information networks, including the Internet and the World Wide Web; automatic control; and ICT-related computer-aided fields. The Dictionary also lists abbreviated names of relevant organizations, conferences, symposia and workshops. This reference is important for all practitioners and users in the areas mentioned above, and those who consult or write technical material. This Second Edition contains 10,000 new entries, for a total of 33,000.


Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition

Author: Mehryar Mohri

Publisher: MIT Press

Published: 2018-12-25

Total Pages: 505

ISBN-13: 0262351366

DOWNLOAD EBOOK

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.


Machine Learning

Machine Learning

Author: Kevin P. Murphy

Publisher: MIT Press

Published: 2012-08-24

Total Pages: 1102

ISBN-13: 0262018020

DOWNLOAD EBOOK

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Machine Learning

Machine Learning

Author: Stephen Marsland

Publisher: CRC Press

Published: 2011-03-23

Total Pages: 407

ISBN-13: 1420067192

DOWNLOAD EBOOK

Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but


Critical Issues in Global Health

Critical Issues in Global Health

Author: C. Everett Koop

Publisher: Jossey-Bass

Published: 2001

Total Pages: 520

ISBN-13:

DOWNLOAD EBOOK

This compendium of essays written by international health experts describes the opportunities and hazards in improving the health of the world's people. Included is a chapter by Harvard's Jessica Stern on extremist terrorism as a global threat.


X.400 Use of Extended Character Sets

X.400 Use of Extended Character Sets

Author: Harald Alvestrand

Publisher: DIANE Publishing

Published: 1995-07

Total Pages: 22

ISBN-13: 9780788119545

DOWNLOAD EBOOK

Defines a way of using existing standards to achieve a standard for sending E-mail in the European languages, extending this to cover the Hebrew and Arabic character sets, and opening up true international E-mail by allowing the full character set specified in ISO-10646 to be used.


Data Clustering: Theory, Algorithms, and Applications, Second Edition

Data Clustering: Theory, Algorithms, and Applications, Second Edition

Author: Guojun Gan

Publisher: SIAM

Published: 2020-11-10

Total Pages: 430

ISBN-13: 1611976332

DOWNLOAD EBOOK

Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.