Towards Higher Categories

Towards Higher Categories

Author: John C. Baez

Publisher: Springer Science & Business Media

Published: 2009-09-24

Total Pages: 292

ISBN-13: 1441915362

DOWNLOAD EBOOK

The purpose of this book is to give background for those who would like to delve into some higher category theory. It is not a primer on higher category theory itself. It begins with a paper by John Baez and Michael Shulman which explores informally, by analogy and direct connection, how cohomology and other tools of algebraic topology are seen through the eyes of n-category theory. The idea is to give some of the motivations behind this subject. There are then two survey articles, by Julie Bergner and Simona Paoli, about (infinity,1) categories and about the algebraic modelling of homotopy n-types. These are areas that are particularly well understood, and where a fully integrated theory exists. The main focus of the book is on the richness to be found in the theory of bicategories, which gives the essential starting point towards the understanding of higher categorical structures. An article by Stephen Lack gives a thorough, but informal, guide to this theory. A paper by Larry Breen on the theory of gerbes shows how such categorical structures appear in differential geometry. This book is dedicated to Max Kelly, the founder of the Australian school of category theory, and an historical paper by Ross Street describes its development.


Linear Algebra for Signal Processing

Linear Algebra for Signal Processing

Author: Adam Bojanczyk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1461242282

DOWNLOAD EBOOK

Signal processing applications have burgeoned in the past decade. During the same time, signal processing techniques have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This trend will continue as many new signal processing applications are opening up in consumer products and communications systems. In particular, signal processing has been making increasingly sophisticated use of linear algebra on both theoretical and algorithmic fronts. This volume gives particular emphasis to exposing broader contexts of the signal processing problems so that the impact of algorithms and hardware can be better understood; it brings together the writings of signal processing engineers, computer engineers, and applied linear algebraists in an exchange of problems, theories, and techniques. This volume will be of interest to both applied mathematicians and engineers.


Patterns and Dynamics in Reactive Media

Patterns and Dynamics in Reactive Media

Author: Rutherford Aris

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 211

ISBN-13: 1461232066

DOWNLOAD EBOOK

Ever since the seminal works on traveling waves and morphogenesis by Fisher, by Kolmogorov, Petrovski and Piscunov, and by Turing, scientists from many disciplines have been fascinated by questions concerning the formation of steady or dynamic patterns in reactive media. Contributions to this volume have been made by chemists, chemical engineers, mathematicians (both pure and applied), and physicists. The topics covered range from reports of experimental studies, through descriptions of numerical experiments, to rather abstract theoretical investigations, each exhibiting different aspects of a very diverse field.


Graph Theory and Sparse Matrix Computation

Graph Theory and Sparse Matrix Computation

Author: Alan George

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 254

ISBN-13: 1461383692

DOWNLOAD EBOOK

When reality is modeled by computation, matrices are often the connection between the continuous physical world and the finite algorithmic one. Usually, the more detailed the model, the bigger the matrix, the better the answer, however, efficiency demands that every possible advantage be exploited. The articles in this volume are based on recent research on sparse matrix computations. This volume looks at graph theory as it connects to linear algebra, parallel computing, data structures, geometry, and both numerical and discrete algorithms. The articles are grouped into three general categories: graph models of symmetric matrices and factorizations, graph models of algorithms on nonsymmetric matrices, and parallel sparse matrix algorithms. This book will be a resource for the researcher or advanced student of either graphs or sparse matrices; it will be useful to mathematicians, numerical analysts and theoretical computer scientists alike.


Computational Fluid Dynamics and Reacting Gas Flows

Computational Fluid Dynamics and Reacting Gas Flows

Author: Bjorn Engquist

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 351

ISBN-13: 146123882X

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications COMPUTATIONAL FLUID DYNAMICS AND REACTING GAS FLOWS is in part the proceedings of a workshop which was an integral part of the 1986-87 IMA program on SCIENTIFIC COMPUTATION. We are grateful to the Scientific Committee: Bjorn Engquist (Chairman), Roland Glowinski, Mitchell Luskin and Andrew Majda for planning and implementing an exciting and stimulating year-long program. We especially thank the Workshop Organizers, Bjorn Engquist, Mitchell Luskin and Andrew Majda, for organizing a workshop which brought together many of the leading researchers in the area of computational fluid dynamics. George R. Sell Hans Weinberger PREFACE Computational fluid dynamics has always been of central importance in scientific computing. It is also a field which clearly displays the essential theme of interaction between mathematics, physics, and computer science. Therefore, it was natural for the first workshop of the 1986- 87 program on scientific computing at the Institute for Mathematics and Its Applications to concentrate on computational fluid dynamics. In the workshop, more traditional fields were mixed with fields of emerging importance such as reacting gas flows and non-Newtonian flows. The workshop was marked by a high level of interaction and discussion among researchers representing varied "schools of thought" and countries.


Atmospheric Modeling

Atmospheric Modeling

Author: David P. Chock

Publisher: Springer Science & Business Media

Published: 2002-07-31

Total Pages: 364

ISBN-13: 9780387954974

DOWNLOAD EBOOK

This volume contains refereed papers submitted by international experts who participated in the Atmospheric Modeling workshop March 15 -19, 2000 at the Institute for Mathematics and Its Applications (IMA) at the University of Minnesota. The papers cover a wide range of topics presented in the workshop. In particular, mathematical topics include a performance comparison of operator-splitting and non- splitting methods, time-stepping methods to preserve positivity and consideration of multiple timescale issues in the modeling of atmospheric chemistry, a fully 3D adaptive-grid method, impact of rid resolution on model predictions, testing the robustness of different flow fields, modeling and numerical methods in four-dimensional variational data assimilation, and parallel computing. Modeling topics include the development of an efficient self-contained global circulation-chemistry-transport model and its applications, the development of a modal aerosol model, and the modeling of the emissions and chemistry of monoterpenes that lead to the formation of secondary organic aerosols. The volume provides an excellent cross section of current research activities in atmospheric modeling.


European Congress of Mathematics

European Congress of Mathematics

Author: Antal Balog

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 412

ISBN-13: 3034888988

DOWNLOAD EBOOK

This is the second volume of the procedings of the second European Congress of Mathematics. Volume I presents the speeches delivered at the Congress, the list of lectures, and short summaries of the achievements of the prize winners. Together with volume II it contains a collection of contributions by the invited lecturers. Finally, volume II also presents reports on some of the Round Table discussions. This two-volume set thus gives an overview of the state of the art in many fields of mathematics and is therefore of interest to every professional mathematician. Contributors: Vol. I: N. Alon, L. Ambrosio, K. Astala, R. Benedetti, Ch. Bessenrodt, F. Bethuel, P. Bjørstad, E. Bolthausen, J. Bricmont, A. Kupiainen, D. Burago, L. Caporaso, U. Dierkes, I. Dynnikov, L.H. Eliasson, W.T. Gowers, H. Hedenmalm, A. Huber, J. Kaczorowski, J. Kollár, D.O. Kramkov, A.N. Shiryaev, C. Lescop, R. März. Vol. II: J. Matousek, D. McDuff, A.S. Merkurjev, V. Milman, St. Müller, T. Nowicki, E. Olivieri, E. Scoppola, V.P. Platonov, J. Pöschel, L. Polterovich , L. Pyber, N. Simányi, J.P. Solovej, A. Stipsicz, G. Tardos, J.-P. Tignol, A.P. Veselov, E. Zuazua.


Free Boundaries in Viscous Flows

Free Boundaries in Viscous Flows

Author: Robert A. Brown

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 122

ISBN-13: 1461384133

DOWNLOAD EBOOK

It is increasingly the case that models of natural phenomena and materials processing systems involve viscous flows with free surfaces. These free boundaries are interfaces of the fluid with either second immiscible fluids or else deformable solid boundaries. The deformation can be due to mechanical displacement or as is the case here, due to phase transformation; the solid can melt or freeze. This volume highlights a broad range of subjects on interfacial phenomena. There is an overview of the mathematical description of viscous free-surface flows, a description of the current understanding of mathematical issues that arise in these models and a discussion of high-order-accuracy boundary-integral methods for the solution of viscous free surface flows. There is the mathematical analysis of particular flows: long-wave instabilities in viscous-film flows, analysis of long-wave instabilities leading to Marangoni convection, and de§ scriptions of the interaction of convection with morphological stability during directional solidification. This book is geared toward anyone with an interest in free-boundary problems, from mathematical analysts to material scientists; it will be useful to applied mathematicians, physicists, and engineers alike.


Mathematical Models for Biological Pattern Formation

Mathematical Models for Biological Pattern Formation

Author: Philip K. Maini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 327

ISBN-13: 1461301335

DOWNLOAD EBOOK

This 121st IMA volume, entitled MATHEMATICAL MODELS FOR BIOLOGICAL PATTERN FORMATION is the first of a new series called FRONTIERS IN APPLICATION OF MATHEMATICS. The FRONTIERS volumes are motivated by IMA pro grams and workshops, but are specially planned and written to provide an entree to and assessment of exciting new areas for the application of mathematical tools and analysis. The emphasis in FRONTIERS volumes is on surveys, exposition and outlook, to attract more mathematicians and other scientists to the study of these areas and to focus efforts on the most important issues, rather than papers on the most recent research results aimed at an audience of specialists. The present volume of peer-reviewed papers grew out of the 1998-99 IMA program on "Mathematics in Biology," in particular the Fall 1998 em phasis on "Theoretical Problems in Developmental Biology and Immunol ogy." During that period there were two workshops on Pattern Formation and Morphogenesis, organized by Professors Murray, Maini and Othmer. James Murray was one of the principal organizers for the entire year pro gram. I am very grateful to James Murray for providing an introduction, and to Philip Maini and Hans Othmer for their excellent work in planning and preparing this first FRONTIERS volume. I also take this opportunity to thank the National Science Foundation, whose financial support of the IMA made the Mathematics in Biology pro gram possible.


Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory

Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory

Author: Carlos Castillo-Chavez

Publisher: Springer Science & Business Media

Published: 2002-05-02

Total Pages: 534

ISBN-13: 9780387953557

DOWNLOAD EBOOK

This IMA Volume in Mathematics and its Applications MATHEMATICAL APPROACHES FOR EMERGING AND REEMERGING INFECTIOUS DISEASES: MODELS, AND THEORY METHODS is based on the proceedings of a successful one week workshop. The pro ceedings of the two-day tutorial which preceded the workshop "Introduction to Epidemiology and Immunology" appears as IMA Volume 125: Math ematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. The tutorial and the workshop are integral parts of the September 1998 to June 1999 IMA program on "MATHEMATICS IN BI OLOGY. " I would like to thank Carlos Castillo-Chavez (Director of the Math ematical and Theoretical Biology Institute and a member of the Depart ments of Biometrics, Statistics and Theoretical and Applied Mechanics, Cornell University), Sally M. Blower (Biomathematics, UCLA School of Medicine), Pauline van den Driessche (Mathematics and Statistics, Uni versity of Victoria), and Denise Kirschner (Microbiology and Immunology, University of Michigan Medical School) for their superb roles as organizers of the meetings and editors of the proceedings. Carlos Castillo-Chavez, es pecially, made a major contribution by spearheading the editing process. I am also grateful to Kenneth L. Cooke (Mathematics, Pomona College), for being one of the workshop organizers and to Abdul-Aziz Yakubu (Mathe matics, Howard University) for serving as co-editor of the proceedings. I thank Simon A. Levin (Ecology and Evolutionary Biology, Princeton Uni versity) for providing an introduction.