Advances in Computers, Volume 107, the latest volume in a series published since 1960, presents detailed coverage of innovations in computer hardware, software, theory, design and applications. Chapters in this updated volume include Advances in Model-based Analysis and Testing, Advances in Software Quality Assurance, Advances in Handling Uncertainty in Testing, Advances in Testing of Communicating Systems, and Advances in Formal Verification and Cyber-physical Systems. This book provides contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. - Provides in-depth surveys and tutorials on new computer technology - Presents well-known authors and researchers in the field - Includes extensive bibliographies with most chapters - Volumes are devoted to single themes or subfields of computer science
This book contains extended and revised versions of the best papers presented at the 28th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2020, held in Salt Lake City, UT, USA, in October 2020.* The 16 full papers included in this volume were carefully reviewed and selected from the 38 papers (out of 74 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.
Before software engineering builds and installations can be implemented into software and/or systems integrations in military and aerospace programs, a comprehensive understanding of the software development life cycle is required. Covering all the development life cycle disciplines, Effective Methods for Software and Systems Integration explains h
Key concepts and best practices for new software engineers — stuff critical to your workplace success that you weren’t taught in school. For new software engineers, knowing how to program is only half the battle. You’ll quickly find that many of the skills and processes key to your success are not taught in any school or bootcamp. The Missing README fills in that gap—a distillation of workplace lessons, best practices, and engineering fundamentals that the authors have taught rookie developers at top companies for more than a decade. Early chapters explain what to expect when you begin your career at a company. The book’s middle section expands your technical education, teaching you how to work with existing codebases, address and prevent technical debt, write production-grade software, manage dependencies, test effectively, do code reviews, safely deploy software, design evolvable architectures, and handle incidents when you’re on-call. Additional chapters cover planning and interpersonal skills such as Agile planning, working effectively with your manager, and growing to senior levels and beyond. You’ll learn: How to use the legacy code change algorithm, and leave code cleaner than you found it How to write operable code with logging, metrics, configuration, and defensive programming How to write deterministic tests, submit code reviews, and give feedback on other people’s code The technical design process, including experiments, problem definition, documentation, and collaboration What to do when you are on-call, and how to navigate production incidents Architectural techniques that make code change easier Agile development practices like sprint planning, stand-ups, and retrospectives This is the book your tech lead wishes every new engineer would read before they start. By the end, you’ll know what it takes to transition into the workplace–from CS classes or bootcamps to professional software engineering.
This book provides a collection of comprehensive research articles on data analytics and applications of wearable devices in healthcare. This Special Issue presents 28 research studies from 137 authors representing 37 institutions from 19 countries. To facilitate the understanding of the research articles, we have organized the book to show various aspects covered in this field, such as eHealth, technology-integrated research, prediction models, rehabilitation studies, prototype systems, community health studies, ergonomics design systems, technology acceptance model evaluation studies, telemonitoring systems, warning systems, application of sensors in sports studies, clinical systems, feasibility studies, geographical location based systems, tracking systems, observational studies, risk assessment studies, human activity recognition systems, impact measurement systems, and a systematic review. We would like to take this opportunity to invite high quality research articles for our next Special Issue entitled “Digital Health and Smart Sensors for Better Management of Cancer and Chronic Diseases” as a part of Sensors journal.
The minimum required contents of a Software Configuration Management Plan (SCMP) are established, and the specific activities to be addressed and their requirements for any portion of a software product's life cycle are defined.
Until the late 1980s, information processing was associated with large mainframe computers and huge tape drives. During the 1990s, this trend shifted toward information processing with personal computers, or PCs. The trend toward miniaturization continues and in the future the majority of information processing systems will be small mobile computers, many of which will be embedded into larger products and interfaced to the physical environment. Hence, these kinds of systems are called embedded systems. Embedded systems together with their physical environment are called cyber-physical systems. Examples include systems such as transportation and fabrication equipment. It is expected that the total market volume of embedded systems will be significantly larger than that of traditional information processing systems such as PCs and mainframes. Embedded systems share a number of common characteristics. For example, they must be dependable, efficient, meet real-time constraints and require customized user interfaces (instead of generic keyboard and mouse interfaces). Therefore, it makes sense to consider common principles of embedded system design. Embedded System Design starts with an introduction into the area and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, like real-time operating systems. The book also discusses evaluation and validation techniques for embedded systems. Furthermore, the book presents an overview of techniques for mapping applications to execution platforms. Due to the importance of resource efficiency, the book also contains a selected set of optimization techniques for embedded systems, including special compilation techniques. The book closes with a brief survey on testing. Embedded System Design can be used as a text book for courses on embedded systems and as a source which provides pointers to relevant material in the area for PhD students and teachers. It assumes a basic knowledge of information processing hardware and software. Courseware related to this book is available at http://ls12-www.cs.tu-dortmund.de/~marwedel.