The IEEE Orange Book presents the recommended engineering practices for the selection and application of emergency and standby power systems. It provides commercial facility designers, operators and owners with guidelines for assuring uninterrupted power.
Bridging the gap between power quality and signal processing This innovative new text brings together two leading experts, one from signal processing and the other from power quality. Combining their fields of expertise, they set forth and investigate various types of power quality disturbances, how measurements of these disturbances are processed and interpreted, and, finally, the use and interpretation of power quality standards documents. As a practical aid to readers, the authors make a clear distinction between two types of power quality disturbances: * Variations: disturbances that are continuously present * Events: disturbances that occur occasionally A complete analysis and full set of tools are provided for each type of disturbance: * Detailed examination of the origin of the disturbance * Signal processing measurement techniques, including advanced techniques and those techniques set forth in standards documents * Interpretation and analysis of measurement data * Methods for further processing the features extracted from the signal processing into site and system indices The depth of coverage is outstanding: the authors present and analyze material that is not covered in the standards nor found in the scientific literature. This text is intended for two groups of readers: students and researchers in power engineering who need to use signal processing techniques for power system applications, and students and researchers in signal processing who need to perform power system disturbance analyses and diagnostics. It is also highly recommended for any engineer or utility professional involved in power quality monitoring.
A thorough analysis of basic electrical-systems considerations is presented. Guidance is provided in design, construction, and continuity of an overall system to achieve safety of life and preservation of property; reliability; simplicity of operation; voltage regulation in the utilization of equipment within the tolerance limits under all load conditions; care and maintenance; and flexibility to permit development and expansion. Recommendations are made regarding system planning; voltage considerations; surge voltage protection; system protective devices; fault calculations; grounding; power switching, transformation, and motor-control apparatus; instruments and meters; cable systems; busways; electrical energy conservation; and cost estimation.
The problems of system grounding, that is, connection to ground of neutral, of the corner of the delta, or of the midtap of one phase, are covered. The advantages and disadvantages of grounded versus ungrounded systems are discussed. Information is given on how to ground the system, where the system should be grounded, and how to select equipment for the grounding of the neutral circuits. Connecting the frames and enclosures of electric apparatus, such as motors, switchgear, transformers, buses, cables conduits, building frames, and portable equipment, to a ground system is addressed. The fundamentals of making the interconnection or ground-conductor system between electric equipment and the ground rods, water pipes, etc. are outlined. The problems of static electricity(how it is generated, what processes may produce it, how it is measured, and what should be done to prevent its generation or to drain the static charges to earth to prevent sparking(are treated. Methods of protecting structures against the effects of lightning are also covered. Obtaining a low-resistance connection to the earth, use of ground rods, connections to water pipes, etc, are discussed. A separate chapter on sensitive electronic equipment is included.
The electric power delivery system that carries electricity from large central generators to customers could be severely damaged by a small number of well-informed attackers. The system is inherently vulnerable because transmission lines may span hundreds of miles, and many key facilities are unguarded. This vulnerability is exacerbated by the fact that the power grid, most of which was originally designed to meet the needs of individual vertically integrated utilities, is being used to move power between regions to support the needs of competitive markets for power generation. Primarily because of ambiguities introduced as a result of recent restricting the of the industry and cost pressures from consumers and regulators, investment to strengthen and upgrade the grid has lagged, with the result that many parts of the bulk high-voltage system are heavily stressed. Electric systems are not designed to withstand or quickly recover from damage inflicted simultaneously on multiple components. Such an attack could be carried out by knowledgeable attackers with little risk of detection or interdiction. Further well-planned and coordinated attacks by terrorists could leave the electric power system in a large region of the country at least partially disabled for a very long time. Although there are many examples of terrorist and military attacks on power systems elsewhere in the world, at the time of this study international terrorists have shown limited interest in attacking the U.S. power grid. However, that should not be a basis for complacency. Because all parts of the economy, as well as human health and welfare, depend on electricity, the results could be devastating. Terrorism and the Electric Power Delivery System focuses on measures that could make the power delivery system less vulnerable to attacks, restore power faster after an attack, and make critical services less vulnerable while the delivery of conventional electric power has been disrupted.
This book provides an understanding of the nature of short-circuit currents, current interruption theories, circuit breaker types, calculations according to ANSI/IEEE and IEC standards, theoretical and practical basis of short-circuit current sources, and the rating structure of switching devices. The book aims to explain the nature of short-circuit currents, the symmetrical components for unsymmetrical faults, and matrix methods of solutions, which are invariably used on digital computers. It includes innovations, worked examples, case studies, and solved problems.
Presents the latest electrical regulation code that is applicable for electrical wiring and equipment installation for all buildings, covering emergency situations, owner liability, and procedures for ensuring public and workplace safety.