It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
This book describes the new generation of discrete choice methods, focusing on the many advances that are made possible by simulation. Researchers use these statistical methods to examine the choices that consumers, households, firms, and other agents make. Each of the major models is covered: logit, generalized extreme value, or GEV (including nested and cross-nested logits), probit, and mixed logit, plus a variety of specifications that build on these basics. Simulation-assisted estimation procedures are investigated and compared, including maximum stimulated likelihood, method of simulated moments, and method of simulated scores. Procedures for drawing from densities are described, including variance reduction techniques such as anithetics and Halton draws. Recent advances in Bayesian procedures are explored, including the use of the Metropolis-Hastings algorithm and its variant Gibbs sampling. The second edition adds chapters on endogeneity and expectation-maximization (EM) algorithms. No other book incorporates all these fields, which have arisen in the past 25 years. The procedures are applicable in many fields, including energy, transportation, environmental studies, health, labor, and marketing.
Economic Models for Industrial Organization focuses on the specification and estimation of econometric models for research in industrial organization. In recent decades, empirical work in industrial organization has moved towards dynamic and equilibrium models, involving econometric methods which have features distinct from those used in other areas of applied economics. These lecture notes, aimed for a first or second-year PhD course, motivate and explain these econometric methods, starting from simple models and building to models with the complexity observed in typical research papers. The covered topics include discrete-choice demand analysis, models of dynamic behavior and dynamic games, multiple equilibria in entry games and partial identification, and auction models.
Almost without exception, everything human beings undertake involves a choice. In recent years there has been a growing interest in the development and application of quantitative statistical methods to study choices made by individuals with the purpose of gaining a better understanding both of how choices are made and of forecasting future choice responses. In this primer the authors provide an unintimidating introduction to the main techniques of choice analysis and include detail on themes such as data collection and preparation, model estimation and interpretation and the design of choice experiments. A companion website to the book provides practice data sets and software to estimate the main discrete choice models such as multinomial logit, nested logit and mixed logit. This primer will be an invaluable resource to students as well as of immense value to consultants and professionals, researchers and anyone else interested in choice analysis and modelling.
Optimal Transport Methods in Economics is the first textbook on the subject written especially for students and researchers in economics. Optimal transport theory is used widely to solve problems in mathematics and some areas of the sciences, but it can also be used to understand a range of problems in applied economics, such as the matching between job seekers and jobs, the determinants of real estate prices, and the formation of matrimonial unions. This is the first text to develop clear applications of optimal transport to economic modeling, statistics, and econometrics. It covers the basic results of the theory as well as their relations to linear programming, network flow problems, convex analysis, and computational geometry. Emphasizing computational methods, it also includes programming examples that provide details on implementation. Applications include discrete choice models, models of differential demand, and quantile-based statistical estimation methods, as well as asset pricing models. Authoritative and accessible, Optimal Transport Methods in Economics also features numerous exercises throughout that help you develop your mathematical agility, deepen your computational skills, and strengthen your economic intuition. The first introduction to the subject written especially for economists Includes programming examples Features numerous exercises throughout Ideal for students and researchers alike
A fully updated second edition of this popular introduction to applied choice analysis, written for graduate students, researchers, professionals and consultants.
Handbook of Behavioral Economics, Volume 2, Foundations and Applications offers critical perspectives on theoretical work within behavioral economics, delivering a comprehensive, critical, up-to-date, and accessible review of the field that has always been missing. This literature summary of the conceptual foundations underlying behavioral economics is written by, and for, economists, with chapters covering Intertemporal choice, Reference-dependent preferences, Beliefs, Cognition, Social preferences, Behavioral game theory, Welfare, and Neuroeconomics. - Helps academic and non-academic economists understand recent rapid changes in theoretical advances within behavioral economics - Designed for economists already convinced of the benefits of behavioral economics and mainstream economists who feel threatened by new developments in behavioral economics - Written for those who wish to become quickly acquainted with behavioral economics
Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.
Intended to bridge the gap between the latest methodological developments and cross-cultural research, this interdisciplinary resource presents the latest strategies for analyzing cross-cultural data. Techniques are demonstrated through the use of applications that employ cross national data sets such as the latest European Social Survey. With an emphasis on the generalized latent variable approach, internationallyâe"prominent researchers from a variety of fields explain how the methods work, how to apply them, and how they relate to other methods presented in the book. Syntax and graphical and verbal explanations of the techniques are included. A website features some of the data sets and syntax commands used in the book. Applications from the behavioral and social sciences that use real data-sets demonstrate: The use of samples from 17 countries to validate the resistance to change scale across these nations How to test the cross-national invariance properties of social trust The interplay between social structure, religiosity, values, and social attitudes A comparison of anti-immigrant attitudes and patterns of religious orientations across European countries. The book is divided into techniques for analyzing cross-cultural data within the generalized-latent-variable approach: multiple-group confirmatory factor analysis and multiple-group structural equation modeling; multi-level analysis; latent class analysis; and item-response theory. Since researchers from various disciplines often use different methodological approaches, a consistent framework for describing and applying each method is used so as to cross âe~methodological bordersâe(tm) between disciplines. Some chapters describe the basic strategy and how it relates to other techniques presented in the book, others apply the techniques and address specific research questions, and a few combine the two. A table in the preface highlights for each chapter: a description of the contents, the statistical methods used, the goal(s) of the analysis, and the data set employed. This book is intended for researchers, practitioners, and advanced students interested in cross-cultural research. Because the applications span a variety of disciplines, the book will appeal to researchers and students in: psychology, political science, sociology, education, marketing and economics, geography, criminology, psychometrics, epidemiology, and public health, as well as those interested in methodology. It is also appropriate for an advanced methods course in cross-cultural analysis.