Ice Adhesion

Ice Adhesion

Author: K. L. Mittal

Publisher: John Wiley & Sons

Published: 2020-10-21

Total Pages: 704

ISBN-13: 1119640539

DOWNLOAD EBOOK

The book containing 18 chapters is divided into three parts: Part 1: Fundamentals of Ice Formation and Ice Characteristics; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered Include: Factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; anti-icing using microstructured surfaces; durability assessment of icephobic coatings; bio-inspired icephobic coatings; challenges in rational fabrication of icephobic surfaces; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.


Ice Adhesion

Ice Adhesion

Author: K. L. Mittal

Publisher: John Wiley & Sons

Published: 2020-12-15

Total Pages: 704

ISBN-13: 1119640377

DOWNLOAD EBOOK

This unique book presents ways to mitigate the disastrous effects of snow/ice accumulation and discusses the mechanisms of new coatings deicing technologies. The strategies currently used to combat ice accumulation problems involve chemical, mechanical or electrical approaches. These are expensive and labor intensive, and the use of chemicals raises serious environmental concerns. The availability of truly icephobic surfaces or coatings will be a big boon in preventing the devastating effects of ice accumulation. Currently, there is tremendous interest in harnessing nanotechnology in rendering surfaces icephobic or in devising icephobic surface materials and coatings, and all signals indicate that such interest will continue unabated in the future. As the key issue regarding icephobic materials or coatings is their durability, much effort is being spent in developing surface materials or coatings which can be effective over a long period. With the tremendous activity in this arena, there is strong hope that in the not too distant future, durable surface materials or coatings will come to fruition. This book contains 20 chapters by subject matter experts and is divided into three parts— Part 1: Fundamentals of Ice Formation and Characterization; Part 2: Ice Adhesion and Its Measurement; and Part 3: Methods to Mitigate Ice Adhesion. The topics covered include: factors influencing the formation, adhesion and friction of ice; ice nucleation on solid surfaces; physics of ice nucleation and growth on a surface; condensation frosting; defrosting properties of structured surfaces; relationship between surface free energy and ice adhesion to surfaces; metrology of ice adhesion; test methods for quantifying ice adhesion strength to surfaces; interlaboratory studies of ice adhesion strength; mechanisms of surface icing and deicing technologies; icephobicities of superhydrophobic surfaces; anti-icing using microstructured surfaces; icephobic surfaces: features and challenges; bio-inspired anti-icing surface materials; durability of anti-icing coatings; durability of icephobic coatings; bio-inspired icephobic coatings; protection from ice accretion on aircraft; and numerical modeling and its application to inflight icing.


Wind Turbine Icing

Wind Turbine Icing

Author: Yan Li

Publisher: BoD – Books on Demand

Published: 2023-11-29

Total Pages: 120

ISBN-13: 1837690146

DOWNLOAD EBOOK

This book includes six chapters on wind turbine icing. For wind turbines operating in cold regions, icing often occurs on blade surfaces in winter. This ice accretion can change the aerodynamic shape of the blade airfoil, causing performance degradation and loss of power generation, even leading to operational accidents. This book focuses on the recent research progress on wind turbine icing. Chapters address such topics as the effect of icing conditions on the icing distribution characteristics of a blade airfoil for vertical-axis wind turbines, power loss estimation in wind turbines due to icing, wind turbine icing prediction methods, especially those using machine learning, the icing process of a single water droplet on a cold aluminum plate surface, the main theories of the icing adhesive mechanism, and theoretical and experimental studies on the ultrasonic de-icing method for wind turbine blades. This book is a valuable reference for researchers and engineers engaged in wind turbine icing and anti-icing research.


Progress in Adhesion and Adhesives, Volume 8

Progress in Adhesion and Adhesives, Volume 8

Author: K. L. Mittal

Publisher: John Wiley & Sons

Published: 2024-10-01

Total Pages: 437

ISBN-13: 1394238207

DOWNLOAD EBOOK

Keep up-to-date with the latest on adhesion and adhesives from an expert group of worldwide authors. The book series “Progress in Adhesion and Adhesives” was conceived as an annual publication and the premier volume made its debut in 2015. The series has been well-received as it is unique and provides substantive and curated review chapters on subjects that touch many disciplines. The current book contains nine chapters on topics that include multi-component theories in surface thermodynamics and adhesion science; plasma-deposited polymer layers as adhesion promotors; functional interlayers to control interfacial adhesion in reinforced polymer composites; hydrophobic materials, and coatings from natural sources; mechanics of ice adhesion; epoxy adhesives technology: latest developments and trends; hot-melt adhesives for automobile assembly; lifetime estimation of thermostat adhesives by physical and chemical aging processes; and nondestructive evaluation and condition monitoring of adhesive joints. Audience The volume will appeal to adhesionists, adhesive technologists, polymer scientists, materials scientists, and those involved/interested in adhesive bonding, plasma polymerization, adhesion in polymer composites, durability and testing of adhesive joints, materials from natural sources, and ice adhesion and mitigation.