Proceedings of the 26th Symposium of the International Committee on Aeronautical Fatigue are a widely referenced summary of advances in aeronautical design against fatigue. This is a bi-annual event and the proceedings have been published in book form for over 35 years.
This book gathers papers presented at the 36th conference and 30th Symposium of the International Committee on Aeronautical Fatigue and Structural integrity. Focusing on the main theme of “Structural Integrity in the Age of Additive Manufacturing”, the chapters cover different aspects concerning research, developments and challenges in this field, offering a timely reference guide to designers, regulators, manufacturer, and both researchers and professionals of the broad aerospace community.
Structural Health Monitoring and Integrity Management is a collection of the papers presented at the 2nd International Conference of Structural Health Monitoring and Integrity Management (ICSHMIM2014, Nanjing, China, 24-26 September 2014), and addresses the most recent developments in the field of Structural Health Monitoring (SHM) and integrity ma
This book provides a state-of-the-art review of the fail-safe and damage tolerance approaches, allowing weight savings and increasing aircraft reliability and structural integrity. The application of the damage tolerance approach requires extensive know-how of the fatigue and fracture properties, corrosion strength, potential failure modes and non-destructive inspection techniques, particularly minimum detectable defect and inspection intervals. In parallel, engineering practice involving damage tolerance requires numerical techniques for stress analysis of cracked structures. These evolved from basic mode I evaluations using rough finite element approaches, to current 3D modeling based on energetic approaches as the VCCT, or simulation of joining processes. This book provides a concise introduction to this subject.
Safety and Reliability of Complex Engineered Systems contains the Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015, held 7-10 September 2015 in Zurich, Switzerland. It includes about 570 papers accepted for presentation at the conference. These contributions focus on theories and methods in the area of risk, safety and
New and not previously published U.S. and international research on composite and nanocomposite materialsFocus on health monitoring/diagnosis, multifunctionality, self-healing, crashworthiness, integrated computational materials engineering (ICME), and moreApplications to aircraft, armor, bridges, ships, and civil structures This fully searchable CD-ROM contains 270 original research papers on all phases of composite materials, presented by specialists from universities, NASA and private corporations such as Boeing. The document is divided into the following sections: Aviation Safety and Aircraft Structures; Armor and Protection; Multifunctional Composites; Effects of Defects; Out of Autoclave Processing; Sustainable Processing; Design and Manufacturing; Stability and Postbuckling; Crashworthiness; Impact and Dynamic Response; Natural, Biobased and Green; Integrated Computational Materials Engineering (ICME); Structural Optimization; Uncertainty Quantification; NDE and SHM Monitoring; Progressive Damage Modeling; Molecular Modeling; Marine Composites; Simulation Tools; Interlaminar Properties; Civil Structures; Textiles. The CD-ROM displays figures and illustrations in articles in full color along with a title screen and main menu screen. Each user can link to all papers from the Table of Contents and Author Index and also link to papers and front matter by using the global bookmarks which allow navigation of the entire CD-ROM from every article. Search features on the CD-ROM can be by full text including all key words, article title, author name, and session title. The CD-ROM has Autorun feature for Windows 2000 or higher products and can also be used with Macintosh computers. The CD includes the program for Adobe Acrobat Reader with Search 11.0. One year of technical support is included with your purchase of this product.
Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to riveted joints in a real structure; effect of various production and design related variables on the riveted joint fatigue behaviour; analytical and experimental results on load transmission in mechanically fastened lap joints; theoretical and experimental analysis of secondary bending and its implications for riveted joint fatigue performance; nucleation and shape development of fatigue cracks in riveted longitudinal lap joints; overview of experimental investigations into the multi-site damage for full scale fuselage panels and riveted lap joint specimens; fatigue crack growth and fatigue life prediction methodology for riveted lap joints; residual strength predictions for riveted lap joints in a fuselage structure. The major issues of each chapter are recapitulated in the last section.
Safety and Reliability – Theory and Applications contains the contributions presented at the 27th European Safety and Reliability Conference (ESREL 2017, Portorož, Slovenia, June 18-22, 2017). The book covers a wide range of topics, including: • Accident and Incident modelling • Economic Analysis in Risk Management • Foundational Issues in Risk Assessment and Management • Human Factors and Human Reliability • Maintenance Modeling and Applications • Mathematical Methods in Reliability and Safety • Prognostics and System Health Management • Resilience Engineering • Risk Assessment • Risk Management • Simulation for Safety and Reliability Analysis • Structural Reliability • System Reliability, and • Uncertainty Analysis. Selected special sessions include contributions on: the Marie Skłodowska-Curie innovative training network in structural safety; risk approaches in insurance and fi nance sectors; dynamic reliability and probabilistic safety assessment; Bayesian and statistical methods, reliability data and testing; oganizational factors and safety culture; software reliability and safety; probabilistic methods applied to power systems; socio-technical-economic systems; advanced safety assessment methodologies: extended Probabilistic Safety Assessment; reliability; availability; maintainability and safety in railways: theory & practice; big data risk analysis and management, and model-based reliability and safety engineering. Safety and Reliability – Theory and Applications will be of interest to professionals and academics working in a wide range of industrial and governmental sectors including: Aeronautics and Aerospace, Automotive Engineering, Civil Engineering, Electrical and Electronic Engineering, Energy Production and Distribution, Environmental Engineering, Information Technology and Telecommunications, Critical Infrastructures, Insurance and Finance, Manufacturing, Marine Industry, Mechanical Engineering, Natural Hazards, Nuclear Engineering, Offshore Oil and Gas, Security and Protection, Transportation, and Policy Making.
This book presents an authoritative account of the potential of advanced composites such as composites, biocomposites, composites geopolymer, hybrid composites and hybrid biocomposites in aerospace application. It documents how in recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection highlights how their unique combination of superior properties such as low density, high strength, high elastic modulus, high hardness, high temperature capability, and excellent chemical and environmental stability are optimized in technologies within these field.