Hyperbolic Geometry

Hyperbolic Geometry

Author: James W. Anderson

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 239

ISBN-13: 1447139879

DOWNLOAD EBOOK

Thoroughly updated, featuring new material on important topics such as hyperbolic geometry in higher dimensions and generalizations of hyperbolicity Includes full solutions for all exercises Successful first edition sold over 800 copies in North America


Introduction to Hyperbolic Geometry

Introduction to Hyperbolic Geometry

Author: Arlan Ramsay

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 300

ISBN-13: 1475755856

DOWNLOAD EBOOK

This book is an introduction to hyperbolic and differential geometry that provides material in the early chapters that can serve as a textbook for a standard upper division course on hyperbolic geometry. For that material, the students need to be familiar with calculus and linear algebra and willing to accept one advanced theorem from analysis without proof. The book goes well beyond the standard course in later chapters, and there is enough material for an honors course, or for supplementary reading. Indeed, parts of the book have been used for both kinds of courses. Even some of what is in the early chapters would surely not be nec essary for a standard course. For example, detailed proofs are given of the Jordan Curve Theorem for Polygons and of the decomposability of poly gons into triangles, These proofs are included for the sake of completeness, but the results themselves are so believable that most students should skip the proofs on a first reading. The axioms used are modern in character and more "user friendly" than the traditional ones. The familiar real number system is used as an in gredient rather than appearing as a result of the axioms. However, it should not be thought that the geometric treatment is in terms of models: this is an axiomatic approach that is just more convenient than the traditional ones.


Low-Dimensional Geometry

Low-Dimensional Geometry

Author: Francis Bonahon

Publisher: American Mathematical Soc.

Published: 2009-07-14

Total Pages: 403

ISBN-13: 082184816X

DOWNLOAD EBOOK

The study of 3-dimensional spaces brings together elements from several areas of mathematics. The most notable are topology and geometry, but elements of number theory and analysis also make appearances. In the past 30 years, there have been striking developments in the mathematics of 3-dimensional manifolds. This book aims to introduce undergraduate students to some of these important developments. Low-Dimensional Geometry starts at a relatively elementary level, and its early chapters can be used as a brief introduction to hyperbolic geometry. However, the ultimate goal is to describe the very recently completed geometrization program for 3-dimensional manifolds. The journey to reach this goal emphasizes examples and concrete constructions as an introduction to more general statements. This includes the tessellations associated to the process of gluing together the sides of a polygon. Bending some of these tessellations provides a natural introduction to 3-dimensional hyperbolic geometry and to the theory of kleinian groups, and it eventually leads to a discussion of the geometrization theorems for knot complements and 3-dimensional manifolds. This book is illustrated with many pictures, as the author intended to share his own enthusiasm for the beauty of some of the mathematical objects involved. However, it also emphasizes mathematical rigor and, with the exception of the most recent research breakthroughs, its constructions and statements are carefully justified.


Lectures on Hyperbolic Geometry

Lectures on Hyperbolic Geometry

Author: Riccardo Benedetti

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 343

ISBN-13: 3642581587

DOWNLOAD EBOOK

Focussing on the geometry of hyperbolic manifolds, the aim here is to provide an exposition of some fundamental results, while being as self-contained, complete, detailed and unified as possible. Following some classical material on the hyperbolic space and the Teichmüller space, the book centers on the two fundamental results: Mostow's rigidity theorem (including a complete proof, following Gromov and Thurston) and Margulis' lemma. These then form the basis for studying Chabauty and geometric topology; a unified exposition is given of Wang's theorem and the Jorgensen-Thurston theory; and much space is devoted to the 3D case: a complete and elementary proof of the hyperbolic surgery theorem, based on the representation of three manifolds as glued ideal tetrahedra.


A Gyrovector Space Approach to Hyperbolic Geometry

A Gyrovector Space Approach to Hyperbolic Geometry

Author: Abraham Ungar

Publisher: Morgan & Claypool Publishers

Published: 2009-03-08

Total Pages: 194

ISBN-13: 1598298232

DOWNLOAD EBOOK

The mere mention of hyperbolic geometry is enough to strike fear in the heart of the undergraduate mathematics and physics student. Some regard themselves as excluded from the profound insights of hyperbolic geometry so that this enormous portion of human achievement is a closed door to them. The mission of this book is to open that door by making the hyperbolic geometry of Bolyai and Lobachevsky, as well as the special relativity theory of Einstein that it regulates, accessible to a wider audience in terms of novel analogies that the modern and unknown share with the classical and familiar. These novel analogies that this book captures stem from Thomas gyration, which is the mathematical abstraction of the relativistic effect known as Thomas precession. Remarkably, the mere introduction of Thomas gyration turns Euclidean geometry into hyperbolic geometry, and reveals mystique analogies that the two geometries share. Accordingly, Thomas gyration gives rise to the prefix "gyro" that is extensively used in the gyrolanguage of this book, giving rise to terms like gyrocommutative and gyroassociative binary operations in gyrogroups, and gyrovectors in gyrovector spaces. Of particular importance is the introduction of gyrovectors into hyperbolic geometry, where they are equivalence classes that add according to the gyroparallelogram law in full analogy with vectors, which are equivalence classes that add according to the parallelogram law. A gyroparallelogram, in turn, is a gyroquadrilateral the two gyrodiagonals of which intersect at their gyromidpoints in full analogy with a parallelogram, which is a quadrilateral the two diagonals of which intersect at their midpoints. Table of Contents: Gyrogroups / Gyrocommutative Gyrogroups / Gyrovector Spaces / Gyrotrigonometry


Hyperbolic Geometry

Hyperbolic Geometry

Author: Birger Iversen

Publisher: Cambridge University Press

Published: 1992-12-17

Total Pages: 317

ISBN-13: 0521435080

DOWNLOAD EBOOK

Although it arose from purely theoretical considerations of the underlying axioms of geometry, the work of Einstein and Dirac has demonstrated that hyperbolic geometry is a fundamental aspect of modern physics. In this book, the rich geometry of the hyperbolic plane is studied in detail, leading to the focal point of the book, Poincare's polygon theorem and the relationship between hyperbolic geometries and discrete groups of isometries. Hyperbolic 3-space is also discussed, and the directions that current research in this field is taking are sketched. This will be an excellent introduction to hyperbolic geometry for students new to the subject, and for experts in other fields.


Complex Hyperbolic Geometry

Complex Hyperbolic Geometry

Author: William Mark Goldman

Publisher: Oxford University Press

Published: 1999

Total Pages: 342

ISBN-13: 9780198537939

DOWNLOAD EBOOK

This is the first comprehensive treatment of the geometry of complex hyperbolic space, a rich area of research with numerous connections to other branches of mathematics, including Riemannian geometry, complex analysis, symplectic and contact geometry, Lie groups, and harmonic analysis.


Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds

Author: John Ratcliffe

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 761

ISBN-13: 1475740131

DOWNLOAD EBOOK

This book is an exposition of the theoretical foundations of hyperbolic manifolds. It is intended to be used both as a textbook and as a reference. Particular emphasis has been placed on readability and completeness of ar gument. The treatment of the material is for the most part elementary and self-contained. The reader is assumed to have a basic knowledge of algebra and topology at the first-year graduate level of an American university. The book is divided into three parts. The first part, consisting of Chap ters 1-7, is concerned with hyperbolic geometry and basic properties of discrete groups of isometries of hyperbolic space. The main results are the existence theorem for discrete reflection groups, the Bieberbach theorems, and Selberg's lemma. The second part, consisting of Chapters 8-12, is de voted to the theory of hyperbolic manifolds. The main results are Mostow's rigidity theorem and the determination of the structure of geometrically finite hyperbolic manifolds. The third part, consisting of Chapter 13, in tegrates the first two parts in a development of the theory of hyperbolic orbifolds. The main results are the construction of the universal orbifold covering space and Poincare's fundamental polyhedron theorem.


Crocheting Adventures with Hyperbolic Planes

Crocheting Adventures with Hyperbolic Planes

Author: Daina Taimina

Publisher: CRC Press

Published: 2018-02-19

Total Pages: 865

ISBN-13: 1351402196

DOWNLOAD EBOOK

Winner, Euler Book Prize, awarded by the Mathematical Association of America. With over 200 full color photographs, this non-traditional, tactile introduction to non-Euclidean geometries also covers early development of geometry and connections between geometry, art, nature, and sciences. For the crafter or would-be crafter, there are detailed instructions for how to crochet various geometric models and how to use them in explorations. New to the 2nd Edition; Daina Taimina discusses her own adventures with the hyperbolic planes as well as the experiences of some of her readers. Includes recent applications of hyperbolic geometry such as medicine, architecture, fashion & quantum computing.


Sources of Hyperbolic Geometry

Sources of Hyperbolic Geometry

Author: John Stillwell

Publisher: American Mathematical Soc.

Published: 1996

Total Pages: 172

ISBN-13: 9780821809228

DOWNLOAD EBOOK

Presents the papers of Beltrami, Klein, and Poincare that brought hyperbolic geometry into the mainstream of mathematics.