Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems
Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
The fields covered by the hydrogen energy topic have grown rapidly, and now it has become clearly multidisciplinary. In addition to production, hydrogen purification and especially storage are key challenges that could limit the use of hydrogen fuel. In this book, the purification of hydrogen with membrane technology and its storage in "solid" form using new hydrides and carbon materials are addressed. Other novelties of this volume include the power conditioning of water electrolyzers, the integration in the electric grid of renewable hydrogen systems and the future role of microreactors and micro-process engineering in hydrogen technology as well as the potential of computational fluid dynamics to hydrogen equipment design and the assessment of safety issues. Finally, and being aware that transportation will likely constitute the first commercial application of hydrogen fuel, two chapters are devoted to the recent advances in hydrogen fuel cells and hydrogen-fueled internal combustion engines for transport vehicles. - Hydrogen from water and biomass considered - Holistic approach to the topic of renewable hydrogen production - Power conditioning of water electrolyzers and integration of renewable hydrogen energy systems considered - Subjects not included in previous books on hydrogen energy - Micro process technology considered - Subject not included in previous books on hydrogen energy - Applications of CFD considered - Subject not included in previous books on hydrogen energy - Fundamental aspects will not be discussed in detail consciously as they are suitably addressed in previous books - Emphasis on technological advancements - Chapters written by recognized experts - Up-to date approach to the subjects and relevant bibliographic references
Membrane technologies are currently the most effective and sustainable methods utilized in diversified water filtration, wastewater treatment, as well as industrial and sustainable energy applications. This book covers essential subsections of membrane separation and bioseparation processes from the perspectives of technical innovation, novelty, and sustainability. The book offers a comprehensive overview of the latest improvements and concerns with respect to membrane fouling remediation techniques, issues of bioincompatibility for biomedical applications, and various subareas of membrane separation processes, which will be an efficient resource for engineers.
This book provides a general overview of syngas technologies as well as an in-depth analysis of the steam reforming process. Syngas is a mixture of hydrogen and carbon oxides which can be made from hydrocarbons, coal and biomass. It is an important intermediate in the chemical industry for manufacture of ammonia, methanol and other petrochemicals as well as hydrogen for refineries and fuel cells. Syngas is playing a growing role in the energy sector, because it can be converted into a number of important energy carriers and fuels. Syngas catalysis creates new options and flexibility in the complex energy network. The steam reforming process is the main technology today for manufacture of syngas. It is a complex intern-mingling of catalysis and heat transfer with restrictions caused by secondary phenomena such as carbon formation. Many of the principles are applicable for other gasification technologies of growing importance. Concepts of Syngas Preparation aims to provide a comprehensive introduction to this complex field of growing importance and gives a detailed analysis of the catalyst and process problems. This book also serves as an important link between science and industry by illustrating how the basic principles can be applied to solve design issues and operational problems./a
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
The development and use of sustainable and alternative fuels (syngas, biogas, biodiesel, bio-oil, hydrogen) derived from sources other than petroleum is needed due to the limited fossil fuel resources, the need for reduction of atmospheric greenhouse gas emissions, energy security, and to meet the future high energy demand due to population growth. New alternative fuels that can be produced locally and derived from renewable sources will be more sustainable compared to fossil fuels. Alternative and renewable fuels can be produced using different thermochemical and bio-chemical processes. Gasification is a thermochemical process used to produce syngas fuel (mainly hydrogen and carbon dioxide) from renewable (biomass) and conventional (coal) sources. The syngas fuels produced from the gasification process can be used for different applications: power generation (combustion of syngas fuel in gas turbine engines), heating, and transportation (internal combustion engines). This book intends to provide the reader with an overview of the current technologies, methods, and strategies of syngas fuel production, characterization, and application.
The production and purification technology of syngas has received huge attention from researchers and industries for the last few years because its development represents one of the major efforts toward more efficient, sustainable, and environmentally benign use of the fossil hydrocarbon resources. The decline of global fossil fuels -- petroleum, natural gas, and coal supplies and the need for clean and alternative energy have become major motives of research world-wide for sustainable energy development. The energy supply of the world today still heavily relies on combustion of fossil fuels for stationary systems, domestic use, and transportation vehicles. Alternative fuels, are needed to fill the supply gap that will continue to grow. This book focuses on syngas technology as well as its production, applications and impact on the environment.
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.