Hydrodynamic Analysis of Underwater Bodies for Efficient Station Keeping in Shallow Waters with Surface Waves

Hydrodynamic Analysis of Underwater Bodies for Efficient Station Keeping in Shallow Waters with Surface Waves

Author: Matthew Bradley

Publisher:

Published: 2014

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

To determine the effect of body shape on the response of underwater vehicles to surface waves in shallow water, the wave radiation hydrodynamic forces are evaluated for a family of (i) prolate spheroidal hull forms and (ii) cylindrical bodies with hemispherical nose and conical tail sections by systematically varying the geometric parameters but keeping displacement constant. The added-mass and wave damping coefficients are determined using a frequency-domain, simple-source based boundary integral method. Results are obtained for a range of wave frequencies and depths of vehicle submergence all for a fixed water depth of 10 m. With the wave exciting force and moment determined using the Froude-Krylov theory, the response transfer functions for heave and pitch are then determined. The heave and pitch response spectra in actual littoral seas are then determined with the sea state modeled using TMA spectral relations. Results show that vehicle slenderness is a key factor affecting the hydrodynamic coefficients and response. The results show two characteristics that increase the radiation hydrodynamic forces corresponding to heave and pitch motions: namely, vehicle length and further-away from mid-vehicle location of the body shoulder. The opposite is true for the oscillatory surge motion. By utilizing these observed characteristics, one can design the lines for maximum radiation forces and consequently minimum hull response for the critical modes of rigid-body motion in given waters and vehicle missions. In the studies carried out in the thesis, a hull with a long parallel middle body with hemispherical nose and conical tail sections has better heave and pitch response characteristics compared prolate spheroid geometry of same volume. The methodology developed herein, which is computationally efficient, can be used to determine optimal hull geometry for minimal passive vehicle response in a given sea.


Hydrodynamics of High-Speed Marine Vehicles

Hydrodynamics of High-Speed Marine Vehicles

Author: Odd M. Faltinsen

Publisher: Cambridge University Press

Published: 2006-01-09

Total Pages: 490

ISBN-13: 1139447939

DOWNLOAD EBOOK

Hydrodynamics of High-Speed Marine Vehicles, first published in 2006, discusses the three main categories of high-speed marine vehicles - vessels supported by submerged hulls, air cushions or foils. The wave environment, resistance, propulsion, seakeeping, sea loads and manoeuvring are extensively covered based on rational and simplified methods. Links to automatic control and structural mechanics are emphasized. A detailed description of waterjet propulsion is given and the effect of water depth on wash, resistance, sinkage and trim is discussed. Chapter topics include resistance and wash; slamming; air cushion-supported vessels, including a detailed discussion of wave-excited resonant oscillations in air cushion; and hydrofoil vessels. The book contains numerous illustrations, examples and exercises.


Hydrodynamics and Water Quality

Hydrodynamics and Water Quality

Author: Zhen-Gang Ji

Publisher: John Wiley & Sons

Published: 2017-07-05

Total Pages: 612

ISBN-13: 1118877152

DOWNLOAD EBOOK

The primary reference for the modeling of hydrodynamics and water quality in rivers, lake, estuaries, coastal waters, and wetlands This comprehensive text perfectly illustrates the principles, basic processes, mathematical descriptions, case studies, and practical applications associated with surface waters. It focuses on solving practical problems in rivers, lakes, estuaries, coastal waters, and wetlands. Most of the theories and technical approaches presented within have been implemented in mathematical models and applied to solve practical problems. Throughout the book, case studies are presented to demonstrate how the basic theories and technical approaches are implemented into models, and how these models are applied to solve practical environmental/water resources problems. This new edition of Hydrodynamics and Water Quality: Modeling Rivers, Lakes, and Estuaries has been updated with more than 40% new information. It features several new chapters, including one devoted to shallow water processes in wetlands as well as another focused on extreme value theory and environmental risk analysis. It is also supplemented with a new website that provides files needed for sample applications, such as source codes, executable codes, input files, output files, model manuals, reports, technical notes, and utility programs. This new edition of the book: Includes more than 120 new/updated figures and 450 references Covers state-of-the-art hydrodynamics, sediment transport, toxics fate and transport, and water quality in surface waters Provides essential and updated information on mathematical models Focuses on how to solve practical problems in surface waters—presenting basic theories and technical approaches so that mathematical models can be understood and applied to simulate processes in surface waters Hailed as “a great addition to any university library” by the Journal of the American Water Resources Association (July 2009), Hydrodynamics and Water Quality, Second Edition is an essential reference for practicing engineers, scientists, and water resource managers worldwide.


Water Waves Generated By Underwater Explosion

Water Waves Generated By Underwater Explosion

Author: Bernard Le Mehaute

Publisher: World Scientific

Published: 1996-04-16

Total Pages: 389

ISBN-13: 981450114X

DOWNLOAD EBOOK

This is the first book on explosion-generated water waves. It presents the theoretical foundations and experimental results of the generation and propagation of impulsively generated waves resulting from underwater explosions. Many of the theories and concepts presented herein are applicable to other types of water waves, in particular, tsunamis and waves generated by the fall of a meteorite. Linear and nonlinear theories, as well as experimental calibrations, are presented for cases of deep and shallow water explosions. Propagation of transient waves on dissipative, nonuniform bathymetries together with laboratory simulations are analyzed and discussed.


The Maritime Engineering Reference Book

The Maritime Engineering Reference Book

Author: Anthony F. Molland

Publisher: Elsevier

Published: 2011-10-13

Total Pages: 921

ISBN-13: 0080560091

DOWNLOAD EBOOK

The Maritime Engineering Reference Book is a one-stop source for engineers involved in marine engineering and naval architecture. In this essential reference, Anthony F. Molland has brought together the work of a number of the world's leading writers in the field to create an inclusive volume for a wide audience of marine engineers, naval architects and those involved in marine operations, insurance and other related fields. Coverage ranges from the basics to more advanced topics in ship design, construction and operation. All the key areas are covered, including ship flotation and stability, ship structures, propulsion, seakeeping and maneuvering. The marine environment and maritime safety are explored as well as new technologies, such as computer aided ship design and remotely operated vehicles (ROVs).Facts, figures and data from world-leading experts makes this an invaluable ready-reference for those involved in the field of maritime engineering.Professor A.F. Molland, BSc, MSc, PhD, CEng, FRINA. is Emeritus Professor of Ship Design at the University of Southampton, UK. He has lectured ship design and operation for many years. He has carried out extensive research and published widely on ship design and various aspects of ship hydrodynamics.* A comprehensive overview from best-selling authors including Bryan Barrass, Rawson and Tupper, and David Eyres* Covers basic and advanced material on marine engineering and Naval Architecture topics* Have key facts, figures and data to hand in one complete reference book


Ocean Wave Energy

Ocean Wave Energy

Author: Joao Cruz

Publisher: Springer

Published: 2010-11-22

Total Pages: 0

ISBN-13: 9783642094316

DOWNLOAD EBOOK

The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.


Twenty-Second Symposium on Naval Hydrodynamics

Twenty-Second Symposium on Naval Hydrodynamics

Author: National Research Council

Publisher: National Academies Press

Published: 2000-03-02

Total Pages: 1039

ISBN-13: 0309065372

DOWNLOAD EBOOK

The Twenty-Second Symposium on Naval Hydrodynamics was held in Washington, D.C., from August 9-14, 1998. It coincided with the 100th anniversary of the David Taylor Model Basin. This international symposium was organized jointly by the Office of Naval Research (Mechanics and Energy Conversion S&T Division), the National Research Council (Naval Studies Board), and the Naval Surface Warfare Center, Carderock Division (David Taylor Model Basin). This biennial symposium promotes the technical exchange of naval research developments of common interest to all the countries of the world. The forum encourages both formal and informal discussion of the presented papers, and the occasion provides an opportunity for direct communication between international peers.


Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion

Author:

Publisher: Elsevier

Published: 2019-06-21

Total Pages: 1034

ISBN-13: 0128195797

DOWNLOAD EBOOK

Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications. Details thermochemical properties and "ab initio" calculations of elementary reaction rates Details kinetic mechanisms of pyrolysis and combustion processes Explains experimental data for improving reaction models and for kinetic mechanisms assessment Describes surrogate fuels and molecular reconstruction of hydrocarbon liquid mixtures Describes pollutant formation in combustion systems Solves and validates the kinetic mechanisms using numerical and statistical methods Outlines optimal design of industrial burners and optimization and dynamic control of pyrolysis furnaces Outlines large eddy simulation of turbulent reacting flows