Optimization in the Energy Industry

Optimization in the Energy Industry

Author: Josef Kallrath

Publisher: Springer Science & Business Media

Published: 2008-12-25

Total Pages: 537

ISBN-13: 3540889655

DOWNLOAD EBOOK

This book offers a broad, in-depth overview that reflects the requirements, possibilities and limits of mathematical optimization and, especially, stochastic optimization in the energy industry.


Mixed Integer Nonlinear Programming

Mixed Integer Nonlinear Programming

Author: Jon Lee

Publisher: Springer Science & Business Media

Published: 2011-12-02

Total Pages: 687

ISBN-13: 1461419271

DOWNLOAD EBOOK

Many engineering, operations, and scientific applications include a mixture of discrete and continuous decision variables and nonlinear relationships involving the decision variables that have a pronounced effect on the set of feasible and optimal solutions. Mixed-integer nonlinear programming (MINLP) problems combine the numerical difficulties of handling nonlinear functions with the challenge of optimizing in the context of nonconvex functions and discrete variables. MINLP is one of the most flexible modeling paradigms available for optimization; but because its scope is so broad, in the most general cases it is hopelessly intractable. Nonetheless, an expanding body of researchers and practitioners — including chemical engineers, operations researchers, industrial engineers, mechanical engineers, economists, statisticians, computer scientists, operations managers, and mathematical programmers — are interested in solving large-scale MINLP instances.


Algorithms for Optimization

Algorithms for Optimization

Author: Mykel J. Kochenderfer

Publisher: MIT Press

Published: 2019-03-12

Total Pages: 521

ISBN-13: 0262039427

DOWNLOAD EBOOK

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.


Convex Optimization

Convex Optimization

Author: Stephen P. Boyd

Publisher: Cambridge University Press

Published: 2004-03-08

Total Pages: 744

ISBN-13: 9780521833783

DOWNLOAD EBOOK

Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.


Derivative-Free and Blackbox Optimization

Derivative-Free and Blackbox Optimization

Author: Charles Audet

Publisher: Springer

Published: 2017-12-02

Total Pages: 307

ISBN-13: 3319689134

DOWNLOAD EBOOK

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.


Numerical Optimization

Numerical Optimization

Author: Jorge Nocedal

Publisher: Springer Science & Business Media

Published: 2006-12-11

Total Pages: 686

ISBN-13: 0387400656

DOWNLOAD EBOOK

Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.


Stochastic Local Search

Stochastic Local Search

Author: Holger H. Hoos

Publisher: Morgan Kaufmann

Published: 2005

Total Pages: 678

ISBN-13: 1558608729

DOWNLOAD EBOOK

Stochastic local search (SLS) algorithms are among the most prominent and successful techniques for solving computationally difficult problems. Offering a systematic treatment of SLS algorithms, this book examines the general concepts and specific instances of SLS algorithms and considers their development, analysis and application.


Optimization of Complex Systems: Theory, Models, Algorithms and Applications

Optimization of Complex Systems: Theory, Models, Algorithms and Applications

Author: Hoai An Le Thi

Publisher: Springer

Published: 2019-06-15

Total Pages: 1164

ISBN-13: 3030218031

DOWNLOAD EBOOK

This book contains 112 papers selected from about 250 submissions to the 6th World Congress on Global Optimization (WCGO 2019) which takes place on July 8–10, 2019 at University of Lorraine, Metz, France. The book covers both theoretical and algorithmic aspects of Nonconvex Optimization, as well as its applications to modeling and solving decision problems in various domains. It is composed of 10 parts, each of them deals with either the theory and/or methods in a branch of optimization such as Continuous optimization, DC Programming and DCA, Discrete optimization & Network optimization, Multiobjective programming, Optimization under uncertainty, or models and optimization methods in a specific application area including Data science, Economics & Finance, Energy & Water management, Engineering systems, Transportation, Logistics, Resource allocation & Production management. The researchers and practitioners working in Nonconvex Optimization and several application areas can find here many inspiring ideas and useful tools & techniques for their works.


Optimization in Operations Research

Optimization in Operations Research

Author: Ronald L. Rardin

Publisher: Prentice Hall

Published: 2014-01-01

Total Pages: 936

ISBN-13: 9780132858113

DOWNLOAD EBOOK

For first courses in operations research, operations management Optimization in Operations Research, Second Edition covers a broad range of optimization techniques, including linear programming, network flows, integer/combinational optimization, and nonlinear programming. This dynamic text emphasizes the importance of modeling and problem formulation andhow to apply algorithms to real-world problems to arrive at optimal solutions. Use a program that presents a better teaching and learning experience-for you and your students. Prepare students for real-world problems: Students learn how to apply algorithms to problems that get them ready for their field. Use strong pedagogy tools to teach: Key concepts are easy to follow with the text's clear and continually reinforced learning path. Enjoy the text's flexibility: The text features varying amounts of coverage, so that instructors can choose how in-depth they want to go into different topics.