Stochastic Hybrid Systems

Stochastic Hybrid Systems

Author: Christos G. Cassandras

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 300

ISBN-13: 1420008544

DOWNLOAD EBOOK

Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.


Verification and Control of Hybrid Systems

Verification and Control of Hybrid Systems

Author: Paulo Tabuada

Publisher: Springer Science & Business Media

Published: 2009-06-12

Total Pages: 202

ISBN-13: 1441902244

DOWNLOAD EBOOK

Hybrid systems describe the interaction of software, described by finite models such as finite-state machines, with the physical world, described by infinite models such as differential equations. This book addresses problems of verification and controller synthesis for hybrid systems. Although these problems are very difficult to solve for general hybrid systems, several authors have identified classes of hybrid systems that admit symbolic or finite models. The novelty of the book lies on the systematic presentation of these classes of hybrid systems along with the relationships between the hybrid systems and the corresponding symbolic models. To show how the existence of symbolic models can be used for verification and controller synthesis, the book also outlines several key results for the verification and controller design of finite systems. Several examples illustrate the different methods and techniques discussed in the book.


Handbook of Hybrid Systems Control

Handbook of Hybrid Systems Control

Author: Jan Lunze

Publisher: Cambridge University Press

Published: 2009-10-15

Total Pages: 583

ISBN-13: 0521765056

DOWNLOAD EBOOK

Sets out core theory and reviews new methods and applications to show how hybrid systems can be modelled and understood.


Stochastic Differential Equations with Markovian Switching

Stochastic Differential Equations with Markovian Switching

Author: Xuerong Mao

Publisher: Imperial College Press

Published: 2006

Total Pages: 430

ISBN-13: 1860947018

DOWNLOAD EBOOK

This textbook provides the first systematic presentation of the theory of stochastic differential equations with Markovian switching. It presents the basic principles at an introductory level but emphasizes current advanced level research trends. The material takes into account all the features of Ito equations, Markovian switching, interval systems and time-lag. The theory developed is applicable in different and complicated situations in many branches of science and industry.


Hybrid Systems: Computation and Control

Hybrid Systems: Computation and Control

Author: Manfred Morari

Publisher: Springer

Published: 2005-02-25

Total Pages: 695

ISBN-13: 3540319549

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 8th International Workshop on Hybrid Systems: Computation and Control, HSCC 2005, held in Zurich, Switzerland in March 2005. The 40 revised full papers presented together with 2 invited papers and the abstract of an invited talk were carefully reviewed and selected from 91 submissions. The papers focus on modeling, analysis, and implementation of dynamic and reactive systems involving both discrete and continuous behaviors. Among the topics addressed are tools for analysis and verification, control and optimization, modeling, engineering applications, and emerging directions in programming language support and implementation.


Hybrid Dynamical Systems

Hybrid Dynamical Systems

Author: Mohamed Djemai

Publisher: Springer

Published: 2014-11-03

Total Pages: 0

ISBN-13: 9783319107943

DOWNLOAD EBOOK

This book is a collection of contributions defining the state of current knowledge and new trends in hybrid systems – systems involving both continuous dynamics and discrete events – as described by the work of several well-known groups of researchers. Hybrid Dynamical Systems presents theoretical advances in such areas as diagnosability, observability and stabilization for various classes of system. Continuous and discrete state estimation and self-triggering control of nonlinear systems are advanced. The text employs various methods, among them, high-order sliding modes, Takagi–Sugeno representation and sampled-data switching to achieve its ends. The many applications of hybrid systems from power converters to computer science are not forgotten; studies of flexible-joint robotic arms and – as representative biological systems – the behaviour of the human heart and vasculature, demonstrate the wide-ranging practical significance of control in hybrid systems. The cross-disciplinary origins of study in hybrid systems are evident. Academic researchers and graduate students interested in hybrid and switched systems need look no further than Hybrid Dynamical Systems for a single source which will bring them up to date with work in this area from around the world.


Stochastic Processes in Cell Biology

Stochastic Processes in Cell Biology

Author: Paul C. Bressloff

Publisher: Springer Nature

Published: 2022-01-04

Total Pages: 773

ISBN-13: 3030725154

DOWNLOAD EBOOK

This book develops the theory of continuous and discrete stochastic processes within the context of cell biology. In the second edition the material has been significantly expanded, particularly within the context of nonequilibrium and self-organizing systems. Given the amount of additional material, the book has been divided into two volumes, with volume I mainly covering molecular processes and volume II focusing on cellular processes. A wide range of biological topics are covered in the new edition, including stochastic ion channels and excitable systems, molecular motors, stochastic gene networks, genetic switches and oscillators, epigenetics, normal and anomalous diffusion in complex cellular environments, stochastically-gated diffusion, active intracellular transport, signal transduction, cell sensing, bacterial chemotaxis, intracellular pattern formation, cell polarization, cell mechanics, biological polymers and membranes, nuclear structure and dynamics, biological condensates, molecular aggregation and nucleation, cellular length control, cell mitosis, cell motility, cell adhesion, cytoneme-based morphogenesis, bacterial growth, and quorum sensing. The book also provides a pedagogical introduction to the theory of stochastic and nonequilibrium processes – Fokker Planck equations, stochastic differential equations, stochastic calculus, master equations and jump Markov processes, birth-death processes, Poisson processes, first passage time problems, stochastic hybrid systems, queuing and renewal theory, narrow capture and escape, extreme statistics, search processes and stochastic resetting, exclusion processes, WKB methods, large deviation theory, path integrals, martingales and branching processes, numerical methods, linear response theory, phase separation, fluctuation-dissipation theorems, age-structured models, and statistical field theory. This text is primarily aimed at graduate students and researchers working in mathematical biology, statistical and biological physicists, and applied mathematicians interested in stochastic modeling. Applied probabilists should also find it of interest. It provides significant background material in applied mathematics and statistical physics, and introduces concepts in stochastic and nonequilibrium processes via motivating biological applications. The book is highly illustrated and contains a large number of examples and exercises that further develop the models and ideas in the body of the text. It is based on a course that the author has taught at the University of Utah for many years.


An Introduction to Hybrid Dynamical Systems

An Introduction to Hybrid Dynamical Systems

Author: Arjan J. van der Schaft

Publisher: Springer

Published: 2007-10-03

Total Pages: 189

ISBN-13: 1846285429

DOWNLOAD EBOOK

This book is about dynamical systems that are "hybrid" in the sense that they contain both continuous and discrete state variables. Recently there has been increased research interest in the study of the interaction between discrete and continuous dynamics. The present volume provides a first attempt in book form to bring together concepts and methods dealing with hybrid systems from various areas, and to look at these from a unified perspective. The authors have chosen a mode of exposition that is largely based on illustrative examples rather than on the abstract theorem-proof format because the systematic study of hybrid systems is still in its infancy. The examples are taken from many different application areas, ranging from power converters to communication protocols and from chaos to mathematical finance. Subjects covered include the following: definition of hybrid systems; description formats; existence and uniqueness of solutions; special subclasses (variable-structure systems, complementarity systems); reachability and verification; stability and stabilizability; control design methods. The book will be of interest to scientists from a wide range of disciplines including: computer science, control theory, dynamical system theory, systems modeling and simulation, and operations research.


Stochastic Reachability Analysis of Hybrid Systems

Stochastic Reachability Analysis of Hybrid Systems

Author: Luminita Manuela Bujorianu

Publisher: Springer Science & Business Media

Published: 2012-04-23

Total Pages: 251

ISBN-13: 1447127951

DOWNLOAD EBOOK

Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then treats issues representing the different faces of SRA: • stochastic reachability based on Markov process theory; • martingale methods; • stochastic reachability as an optimal stopping problem; and • dynamic programming. The book is rounded off by an appendix providing mathematical underpinning on subjects such as ordinary differential equations, probabilistic measure theory and stochastic modeling, which will help the non-expert-mathematician to appreciate the text. Stochastic Reachability Analysis of Hybrid Systems characterizes a highly interdisciplinary area of research and is consequently of significant interest to academic researchers and graduate students from a variety of backgrounds in control engineering, applied mathematics and computer science. The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available.


Hybrid Feedback Control

Hybrid Feedback Control

Author: Ricardo G. Sanfelice

Publisher: Princeton University Press

Published: 2021-01-12

Total Pages: 420

ISBN-13: 0691180229

DOWNLOAD EBOOK

"Hybrid systems are those that-unlike classical systems-exhibit both discrete changes, or "jumps", and continuous changes, or "flow." The canonical example of a hybrid system is a bouncing ball: the ball's speed changes continuously between bounces, but there is a discrete jump in velocity each time the ball impacts the ground. Hybrid systems feature widely across disciplines, including in biology, computer science, and mechanical engineering; examples range from fireflies to self-driving cars. Although classical control theory provides powerful tools for analyzing systems that exhibit either flow or jumps, it is ill-equipped to handle hybrid systems, which feature both behaviors. In Hybrid Feedback Control, Ricardo Sanfelice presents a self-contained introduction to the control of hybrid systems, and develops new tools for their design and analysis. This monograph uses hybrid systems notation to present a new, unified control theory framework, thus filling an important gap in the control theory literature. In addition to presenting this theoretical framework, the book also includes a variety of examples and exercises, a Matlab toolbox, and a summary at the beginning of each chapter. The book was originally used in a series of lectures on the topic, and will find a modest amount of crossover course use. The book will also find use outside the field of control, particularly in dynamical systems theory, applied mathematics, and computer science"--