This book constitutes the proceedings of the 5th International Conference on Hybrid Artificial Intelligent Systems, held in San Sebastian, Spain, in June 2010.
th The 5 International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010) has become a unique, established and broad interdisciplinary forum for researchers and practitioners who are involved in developing and applying symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques, and bringing the most relevant achievements in this field. Overcoming the rigid encasing imposed by the arising orthodoxy in the field of arti- cial intelligence, which has led to the partition of researchers into so-called areas or fields, interest in hybrid intelligent systems is growing because they give freedom to design innovative solutions to the ever-increasing complexities of real-world pr- lems. Noise and uncertainty call for probabilistic (often Bayesian) methods, while the huge amount of data in some cases asks for fast heuristic (in the sense of suboptimal and ad-hoc) algorithms able to give answers in acceptable time frames. High dim- sionality demands linear and non-linear dimensionality reduction and feature extr- tion algorithms, while the imprecision and vagueness call for fuzzy reasoning and linguistic variable formalization. Nothing impedes real-life problems to mix diffic- ties, presenting huge quantities of noisy, vague and high-dimensional data; therefore, the design of solutions must be able to resort to any tool of the trade to attack the problem. Combining diverse paradigms poses challenging problems of computational and methodological interfacing of several previously incompatible approaches. This is, thus, the setting of HAIS conference series, and its increasing success is the proof of the vitality of this exciting field.
This book constitutes the refereed proceedings of the 16th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2021, held in Bilbao, Spain, in September 2021. The 44 full and 11 short papers presented in this book were carefully reviewed and selected from 81 submissions. The papers are grouped into these topics: data mining, knowledge discovery and big data; bio-inspired models and evolutionary computation; learning algorithms; visual analysis and advanced data processing techniques; machine learning applications; hybrid intelligent applications; deep learning applications; and optimization problem applications.
This volume constitutes the proceedings of the 10th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2015, held Bilbao, Spain, June 2014. The 60 papers published in this volume were carefully reviewed and selected from 190 submissions. They are organized in topical sections such as data mining and knowledge discovery; video and image analysis; bio-inspired models and evolutionary computation; learning algorithms; hybrid intelligent systems for data mining and applications; classification and cluster analysis, HAIS applications.
This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms.
Solving complex problems in real-world contexts, such as financial investment planning or mining large data collections, involves many different sub-tasks, each of which requires different techniques. To deal with such problems, a great diversity of intelligent techniques are available, including traditional techniques like expert systems approaches and soft computing techniques like fuzzy logic, neural networks, or genetic algorithms. These techniques are complementary approaches to intelligent information processing rather than competing ones, and thus better results in problem solving are achieved when these techniques are combined in hybrid intelligent systems. Multi-Agent Systems are ideally suited to model the manifold interactions among the many different components of hybrid intelligent systems. This book introduces agent-based hybrid intelligent systems and presents a framework and methodology allowing for the development of such systems for real-world applications. The authors focus on applications in financial investment planning and data mining.
This book highlights the recent research on hybrid intelligent systems and their various practical applications. It presents 58 selected papers from the 20th International Conference on Hybrid Intelligent Systems (HIS 2020) and 20 papers from the 12th World Congress on Nature and Biologically Inspired Computing (NaBIC 2020), which was held online, from December 14 to 16, 2020. A premier conference in the field of artificial intelligence, HIS - NaBIC 2020 brought together researchers, engineers and practitioners whose work involves intelligent systems, network security and their applications in industry. Including contributions by authors from 25 countries, the book offers a valuable reference guide for all researchers, students and practitioners in the fields of science and engineering.
This book constitutes the proceedings of the 5th International Conference on Hybrid Artificial Intelligent Systems, held in San Sebastian, Spain, in June 2010.
th The 5 International Conference on Hybrid Artificial Intelligence Systems (HAIS 2010) has become a unique, established and broad interdisciplinary forum for researchers and practitioners who are involved in developing and applying symbolic and sub-symbolic techniques aimed at the construction of highly robust and reliable problem-solving techniques, and bringing the most relevant achievements in this field. Overcoming the rigid encasing imposed by the arising orthodoxy in the field of arti- cial intelligence, which has led to the partition of researchers into so-called areas or fields, interest in hybrid intelligent systems is growing because they give freedom to design innovative solutions to the ever-increasing complexities of real-world pr- lems. Noise and uncertainty call for probabilistic (often Bayesian) methods, while the huge amount of data in some cases asks for fast heuristic (in the sense of suboptimal and ad-hoc) algorithms able to give answers in acceptable time frames. High dim- sionality demands linear and non-linear dimensionality reduction and feature extr- tion algorithms, while the imprecision and vagueness call for fuzzy reasoning and linguistic variable formalization. Nothing impedes real-life problems to mix diffic- ties, presenting huge quantities of noisy, vague and high-dimensional data; therefore, the design of solutions must be able to resort to any tool of the trade to attack the problem. Combining diverse paradigms poses challenging problems of computational and methodological interfacing of several previously incompatible approaches. This is, thus, the setting of HAIS conference series, and its increasing success is the proof of the vitality of this exciting field.
This carefully edited book combines symbolic and sub-symbolic techniques to construct more robust and reliable problem solving models. This volume focused on "Hybrid Artificial Intelligence Systems" contains a collection of papers that were presented at the 2nd International Workshop on Hybrid Artificial Intelligence Systems, held in 12 - 13 November, 2007, Salamanca, Spain.