This title discusses the anatomy and physiology of human respiration, some of the newest macro- and microscopic models of the respiratory system, numerical simulation and computer visualization of gas transport phenomena, and applications of these models to medical diagnostics, treatment and safety.
This is an integrated textbook on the respiratory system, covering the anatomy, physiology and biochemistry of the system, all presented in a clinically relevant context appropriate for the first two years of the medical student course. - One of the seven volumes in the Systems of the Body series. - Concise text covers the core anatomy, physiology and biochemistry in an integrated manner as required by system- and problem-based medical courses. - The basic science is presented in the clinical context in a way appropriate for the early part of the medical course. - There is a linked website providing self-assessment material ideal for examination preparation.
This report considers the biological and behavioral mechanisms that may underlie the pathogenicity of tobacco smoke. Many Surgeon General's reports have considered research findings on mechanisms in assessing the biological plausibility of associations observed in epidemiologic studies. Mechanisms of disease are important because they may provide plausibility, which is one of the guideline criteria for assessing evidence on causation. This report specifically reviews the evidence on the potential mechanisms by which smoking causes diseases and considers whether a mechanism is likely to be operative in the production of human disease by tobacco smoke. This evidence is relevant to understanding how smoking causes disease, to identifying those who may be particularly susceptible, and to assessing the potential risks of tobacco products.
A New York Times Bestseller A Washington Post Notable Nonfiction Book of 2020 Named a Best Book of 2020 by NPR “A fascinating scientific, cultural, spiritual and evolutionary history of the way humans breathe—and how we’ve all been doing it wrong for a long, long time.” —Elizabeth Gilbert, author of Big Magic and Eat Pray Love No matter what you eat, how much you exercise, how skinny or young or wise you are, none of it matters if you’re not breathing properly. There is nothing more essential to our health and well-being than breathing: take air in, let it out, repeat twenty-five thousand times a day. Yet, as a species, humans have lost the ability to breathe correctly, with grave consequences. Journalist James Nestor travels the world to figure out what went wrong and how to fix it. The answers aren’t found in pulmonology labs, as we might expect, but in the muddy digs of ancient burial sites, secret Soviet facilities, New Jersey choir schools, and the smoggy streets of São Paulo. Nestor tracks down men and women exploring the hidden science behind ancient breathing practices like Pranayama, Sudarshan Kriya, and Tummo and teams up with pulmonary tinkerers to scientifically test long-held beliefs about how we breathe. Modern research is showing us that making even slight adjustments to the way we inhale and exhale can jump-start athletic performance; rejuvenate internal organs; halt snoring, asthma, and autoimmune disease; and even straighten scoliotic spines. None of this should be possible, and yet it is. Drawing on thousands of years of medical texts and recent cutting-edge studies in pulmonology, psychology, biochemistry, and human physiology, Breath turns the conventional wisdom of what we thought we knew about our most basic biological function on its head. You will never breathe the same again.
This guideline defines ventilation and then natural ventilation. It explores the design requirements for natural ventilation in the context of infection control, describing the basic principles of design, construction, operation and maintenance for an effective natural ventilation system to control infection in health-care settings.
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.
Knowledge about the mechanisms of lung development has been growing rapidly, especially with regard to cellular and molecular aspects of growth and differentiation. This authoritative international volume reviews key aspects of lung development in health and disease by providing a comprehensive review of the complex series of cellular and molecular interactions required for lung development. It covers such topics as pulmonary hypoplasia, effects of malnutrition, and pulmaonary angiogenesis. An indispensable reference for all those involved in studying or treating lung disease in neonates and children, the book offers a unique view of the development of this essential organ.