Although Reliability Engineering can trace its roots back to World War II, its application to medical devices is relatively recent, and its treatment in the published literature has been quite limited. With the medical device industry among the fastest growing segments of the US economy, it is vital that the engineering, biomedical, manufacturing,
Human error is here to stay. This perhaps obvious statement has a profound implication for society when faced with the types of hazardous system accidents that have occurred over the past three decades. Such accidents have been strongly influenced by human error, yet many system designs in existence or being planned and built do not take human error into consideration.; "A Guide to Practical Human Reliability Assessment" is a practical and pragmatic guide to the techniques and approaches of human reliability assessment HRA. lt offers the reader explanatory and practical methods which have been applied and have worked in high technology and high risk assessments - particularly but not exclusively to potentially hazardous industries such as exist in process control, nuclear power, chemical and petrochemical industries. A Guide to Practical Human Reliability Assessment offers the practitioner a comprehensive tool-kit of different approaches along with guidance on selecting different methods for different applications. It covers the risk assessment and the HRA process, as well as methods of task analysis, error identification, quantification, representation of errors in the risk analysis, followed by error reduction analysis, quality assurance and documentation. There are also a number of detailed case studies from nuclear, chemical, offshore, and marine HRA'S, exemplfying the image of techniques and the impact of HRA in existing and design-stage systems.
A continually evolving discipline, human reliability assessment (HRA) has elements of controversy from the definition of terms to the application of appropriate methods for the representation of human failure probability. The idea that human error is a random event is falling out of favor and the concept that humans can be set up to fail or succeed
Human reliability, error, and human factors in the area of power generation have been receiving increasing attention in recent years. Each year billions of dollars are spent in the area of power generation to design, construct/manufacture, operate, and maintain various types of power systems around the globe, and such systems often fail due to human error. This book compiles various recent results and data into one volume, and eliminates the need to consult many diverse sources to obtain vital information. It enables potential readers to delve deeper into a specific area, providing the source of most of the material presented in references at the end of each chapter. Examples along with solutions are also provided at appropriate places, and there are numerous problems for testing the reader’s comprehension. Chapters cover a broad range of topics, including general methods for performing human reliability and error analysis in power plants, specific human reliability analysis methods for nuclear power plants, human factors in control systems, and human error in power plant maintenance. They are written in such a manner that the potential reader requires no previous knowledge to understand their contents. “Human Reliability, Error, and Human Factors in Power Generation” will prove useful to many individuals, including engineering professionals working in the power generation industry, researchers, instructors, and undergraduate and graduate students in the field of power engineering.
This book discusses human reliability programs (HRPs) and their various elements, including safety and security case studies. The topics covered include significance and vulnerability aspects of human reliability and sustainable HRP, including case studies and lessons learned, methodologies used for human reliability analysis, and good practices of HRPs from various industries. Human reliability is widely used in fields requiring high standards of safety, such as the aviation, petroleum and chemical process, and nuclear industries. The book showcases contributions on the topic from experts in the field of technology, design, aviation, and nuclear industries. The book can be a valuable reference for researchers and professionals interested in HRP to ensure safety and security in industries.
The rail human factors/ergonomics community has grown quickly and extensively, and there is much increased recognition of the vital importance of ergonomics/human factors by rail infrastructure owners, rail operating companies, system developers, regulators and national and trans-national government. This book, the fourth on rail human factors, is
Proceedings of the 15th International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences, Nice, France, 24-27 July 2024.
The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems? In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable Google engineers to make systems more scalable, reliable, and efficient—lessons directly applicable to your organization. This book is divided into four sections: Introduction—Learn what site reliability engineering is and why it differs from conventional IT industry practices Principles—Examine the patterns, behaviors, and areas of concern that influence the work of a site reliability engineer (SRE) Practices—Understand the theory and practice of an SRE’s day-to-day work: building and operating large distributed computing systems Management—Explore Google's best practices for training, communication, and meetings that your organization can use
Presents a practical approach for incorporating human reliability analysis (HRA) into probabilistic safety assessment (PSA). This document describes the steps needed and the documentation that should be provided both to support the PSA itself and to ensure effective communication of important information arising from the studies.