Human Immunodeficiency Virus Reverse Transcriptase

Human Immunodeficiency Virus Reverse Transcriptase

Author: Stuart LeGrice

Publisher: Springer Science & Business Media

Published: 2013-07-23

Total Pages: 358

ISBN-13: 1461472911

DOWNLOAD EBOOK

The Reverse Transcriptase (RT) of Human Immunodeficiency Virus Type 1 (HIV-1) arguably ranks amongst one of the most extensively studied retroviral enzymes. Heterologous expression and purification of HIV-1 RT in the early eighties, approval of the first nucleoside analogue RT inhibitor (NRTI) in 1987, discovery of resistance to RT inhibitors, approval of the first non-nucleoside analogue RT inhibitor (NNRTI) in 1996 and the various crystal structures of RT with and without bound substrate(s) and/or inhibitors represent only a few of the important milestones that describe the a bench-to-bedside success in the continuing effort to combat HIV-1 infection and its consequences. Nucleoside and nonnucleoside RT inhibitors remain important components in frequently used drug regimens to treat the infection. RT inhibitors also play important roles in recently validated strategies to prevent transmission of the virus. The relevance of HIV-1 RT as a drug target has simultaneously triggered interest in basic research studies aimed at providing a more detailed understanding of interactions between proteins, nucleic acids, and small molecule ligands in general terms. In light of the ever-growing knowledge on structure and function of HIV-1 RT, this enzyme serves as a valuable “model system” in efforts to develop novel experimental tools and to explain biochemical processes. This monograph is designed to provide an overview of important aspects in past and current HIV-1 RT research, with focus on mechanistic aspects and translation of knowledge into drug discovery and development. The first section includes chapters with emphasis placed on the coordination of the RT-associated DNA polymerase and ribonuclease H (RNase H) activities. The second covers mechanisms of action and future perspectives associated with NRTIs and NNRTIs, while the third section includes chapters focusing on novel strategies to target the RT enzyme. Chapters of the final part are intended to discuss mechanisms involved in HIV variability and the development of drug resistance. We hope that these contributions will stimulate interest, and encourage research aimed at the development of novel RT inhibitors. The lack of bona fide RNase H inhibitors with potent antiviral activity provides an example for challenges and opportunities in the field.


Human Retroviruses

Human Retroviruses

Author: Bryan Cullen

Publisher: Oxford University Press

Published: 1993

Total Pages: 220

ISBN-13: 9780199633821

DOWNLOAD EBOOK

The first book to specifically cover the molecular biology of retroviruses - of immense importance since the high profile of HIV. International contributors provide detailed reviews of the latest knowledge. An excellent text for both medical and non-medical researchers, it also serves as an illuminating introduction for scientists active in other areas.


Reverse Transcriptase Inhibitors in HIV/AIDS Therapy

Reverse Transcriptase Inhibitors in HIV/AIDS Therapy

Author: Gail Skowron

Publisher: Springer Science & Business Media

Published: 2007-11-10

Total Pages: 536

ISBN-13: 1597450855

DOWNLOAD EBOOK

A magisterial survey of all aspects of the reverse transcriptase inhibitors (RTIs) used to treat HIV/AIDS, including drug discovery, pharmacology, development of drug resistance, toxicity, and prevention of mother-to-child transmission of HIV/AIDS. The authors synthesize our current understanding of the role of reverse transcriptase in the viral life cycle, describe the discovery and development of eight nucleoside and nucleotide analogs that represent milestones in treatment history, and thoroughly discuss the question of toxicity and resistance to this class of drugs. They also address three non-nucleoside RTIs and their pharmacokinetics and comparative clinical efficacy, new RTIs currently under development, and the impact of approved agents on treatment, in general, and on vertical transmission in the developing world.


HIV-1 Integrase

HIV-1 Integrase

Author: Nouri Neamati

Publisher: John Wiley & Sons

Published: 2011-08-10

Total Pages: 710

ISBN-13: 1118015363

DOWNLOAD EBOOK

This book comprehensively covers the mechanisms of action and inhibitor design for HIV-1 integrase. It serves as a resource for scientists facing challenging drug design issues and researchers in antiviral drug discovery. Despite numerous review articles and isolated book chapters dealing with HIV-1 integrase, there has not been a single source for those working to devise anti-AIDS drugs against this promising target. But this book fills that gap and offers a valuable introduction to the field for the interdisciplinary scientists who will need to work together to design drugs that target HIV-1 integrase.


The Human Immunodeficiency Virus

The Human Immunodeficiency Virus

Author: Emilio Emini

Publisher: Princeton University Press

Published: 2021-04-13

Total Pages: 546

ISBN-13: 0691228833

DOWNLOAD EBOOK

The past few years have witnessed an explosive increase in our collective knowledge of the biology of the human immunodeficiency virus (HIV). Researchers have acquired new understanding of the virus's biochemistry, molecular biology, pathogenesis, genetics, and immunobiology. Resulting therapeutic advances have significantly prolonged the lives of thousands. Yet, the need to develop better therapies is ever more acute and--given the virus's continued spread through the human population--the need for an effective vaccine is urgent. These goals can be accomplished only through the experienced synthesis of information from the many disciplines participating in HIV research and through the insights of new investigators. This volume is designed to lower the barriers imposed on investigators by the sheer volume of available information--information that often can be found only in far-flung and specialized journals. It provides, in a single resource, an in-depth overview of the diverse areas that constitute HIV research. The result is a broad introduction for students and researchers new to the field as well as an integrated overview for researchers specialized in particular areas of HIV investigation. The volume will also benefit those seeking technical understanding of the virus's biology, including physicians treating HIV-infected patients. Each chapter is a comprehensive presentation of one area of current AIDS research--including work on the virus life cycle, epidemiology, genetics, protease and reverse transcriptase inhibitors, receptor and co-receptor interactions, therapeutic targets, clinical treatment, immunobiology, and vaccines--written by a leading researcher in that area. The contributors are Jon P. Anderson, Jan Balzarini, Elana Cherry, Thomas J. Coates, Chris Collins, Jon H. Condra, Mark B. Feinberg, Richard B. Gaynor, Matthias Götte, Daria J. Hazuda, Spyros Kalams, Nathaniel R. Landau, Gerald H. Learn, Norman L. Letvin, James I. Mullins, Willscott E. Naugler, David Nickle, Matthew Rain, Allen G. Rodrigo, Daniel Shriner, Shalom Spira, Mario Stevenson, Todd Summers, Catherine Ulich, Joseph P. Vacca, Mark A. Wainberg, Bruce D. Walker, and Yang Wang.


Characterizing Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Integrase Interaction

Characterizing Human Immunodeficiency Virus Type 1 Reverse Transcriptase and Integrase Interaction

Author: Shewit Tekeste

Publisher:

Published: 2014

Total Pages: 83

ISBN-13:

DOWNLOAD EBOOK

Human immunodeficiency virus type 1 (HIV-1) replication requires the reverse transcription of its RNA genome into double-stranded DNA copies within the cytoplasm before integration into the host chromosome. Reverse transcriptase (RT) and integrase (IN) are the viral enzymes responsible for catalyzing the essential steps of reverse transcription and integration, respectively. While numerous studies have led to a greater understanding of the functional roles that RT and IN individually play in HIV-1 replication, little is known about the functional role of RT-IN complex formation in vivo. We hypothesize that RT-IN interaction has functional significance in HIV-1 reverse transcription and replication kinetics. We have mapped the putative binding domain of RT on IN to nine residues on the IN C-terminal domain (CTD). We tested the significance of RT-IN interaction on reverse transcription and viral replication, and identified the step at which viral replication of these IN mutants become defective. We observed impairment of viral cDNA synthesis in viruses harboring IN mutations at the putative RT-binding surface, supporting our hypothesis that the RT-IN interaction during the reverse transcription step is biologically relevant. We have developed a pharmacological approach to study and screen for inhibitors against the RT-IN interaction. Lastly, we have also initiated biochemical studies to determine the IN binding domain domain on RT to contribute to the full understanding of the binding mechanism.