This volume presents a comprehensive and comprehensible set of guidelines for reporting the statistical analyses and research designs and activities commonly used in biomedical research.
Praise for the First Edition " . . . the book is a valuable addition to the literature in the field, serving as a much-needed guide for both clinicians and advanced students."—Zentralblatt MATH A new edition of the cutting-edge guide to diagnostic tests in medical research In recent years, a considerable amount of research has focused on evolving methods for designing and analyzing diagnostic accuracy studies. Statistical Methods in Diagnostic Medicine, Second Edition continues to provide a comprehensive approach to the topic, guiding readers through the necessary practices for understanding these studies and generalizing the results to patient populations. Following a basic introduction to measuring test accuracy and study design, the authors successfully define various measures of diagnostic accuracy, describe strategies for designing diagnostic accuracy studies, and present key statistical methods for estimating and comparing test accuracy. Topics new to the Second Edition include: Methods for tests designed to detect and locate lesions Recommendations for covariate-adjustment Methods for estimating and comparing predictive values and sample size calculations Correcting techniques for verification and imperfect standard biases Sample size calculation for multiple reader studies when pilot data are available Updated meta-analysis methods, now incorporating random effects Three case studies thoroughly showcase some of the questions and statistical issues that arise in diagnostic medicine, with all associated data provided in detailed appendices. A related web site features Fortran, SAS®, and R software packages so that readers can conduct their own analyses. Statistical Methods in Diagnostic Medicine, Second Edition is an excellent supplement for biostatistics courses at the graduate level. It also serves as a valuable reference for clinicians and researchers working in the fields of medicine, epidemiology, and biostatistics.
Now in its Fourth Edition, An Introduction to Medical Statistics continues to be a 'must-have' textbook for anyone who needs a clear logical guide to the subject. Written in an easy-to-understand style and packed with real life examples, the text clearly explains the statistical principles used in the medical literature. Taking readers through the common statistical methods seen in published research and guidelines, the text focuses on how to interpret and analyse statistics for clinical practice. Using extracts from real studies, the author illustrates how data can be employed correctly and incorrectly in medical research helping readers to evaluate the statistics they encounter and appropriately implement findings in clinical practice. End of chapter exercises, case studies and multiple choice questions help readers to apply their learning and develop their own interpretative skills. This thoroughly revised edition includes new chapters on meta-analysis, missing data, and survival analysis.
As many medical and healthcare researchers have a love-hate relationship with statistics, the second edition of this practical reference book may make all the difference. Using practical examples, mainly from the authors' own research, the book explains how to make sense of statistics, turn statistical computer output into coherent information, and help decide which pieces of information to report and how to present them. The book takes you through all the stages of the research process, from the initial research proposal, through ethical approval and data analysis, to reporting on and publishing the findings. Helpful tips and information boxes, offer clear guidance throughout, including easily followed instructions on how to: -develop a quantitative research proposal for ethical/institutional approval or research funding -write up the statistical aspects of a paper for publication -choose and perform simple and more advanced statistical analyses -describe the statistical methods and present the results of an analysis. This new edition covers a wider range of statistical programs - SAS, STATA, R, and SPSS, and shows the commands needed to obtain the analyses and how to present it, whichever program you are using. Each specific example is annotated to indicate other scenarios that can be analysed using the same methods, allowing you to easily transpose the knowledge gained from the book to your own research. The principles of good presentation are also covered in detail, from translating relevant results into suitable extracts, through to randomised controlled trials, and how to present a meta-analysis. An added ingredient is the inclusion of code and datasets for all analyses shown in the book on our website (http://medical-statistics.info). Written by three experienced biostatisticians based in the UK and US, this is a step-by-step guide that will be invaluable to researchers and postgraduate students in medicine, those working in the professions allied to medicine, and statisticians in consultancy roles.
Medicine deals with treatments that work often but not always, so treatment success must be based on probability. Statistical methods lift medical research from the anecdotal to measured levels of probability. This book presents the common statistical methods used in 90% of medical research, along with the underlying basics, in two parts: a textbook section for use by students in health care training programs, e.g., medical schools or residency training, and a reference section for use by practicing clinicians in reading medical literature and performing their own research. The book does not require a significant level of mathematical knowledge and couches the methods in multiple examples drawn from clinical medicine, giving it applicable context. Easy-to-follow format incorporates medical examples, step-by-step methods, and check yourself exercises Two-part design features course material and a professional reference section Chapter summaries provide a review of formulas, method algorithms, and check lists Companion site links to statistical databases that can be downloaded and used to perform the exercises from the book and practice statistical methods New in this Edition: New chapters on: multifactor tests on means of continuous data, equivalence testing, and advanced methods New topics include: trial randomization, treatment ethics in medical research, imputation of missing data, and making evidence-based medical decisions Updated database coverage and additional exercises Expanded coverage of numbers needed to treat and to benefit, and regression analysis including stepwise regression and Cox regression Thorough discussion on required sample size
Statistics for Health Care Professionals is an accessible guide to understanding statistics within health care practice. Focusing on quantitative approaches to investigating problems, the book introduces the basic rules and principles of statistics. Challenging the notion that statistics are often incomprehensible and complex to use, the authors begin by presenting a `how to' section explaining how specific statistical tests can be performed. They also help readers to understand the language of statistics, which is often a stumbling block for those coming to the subject for the first time. The reader is taught how to calculate statistics by hand as well as being introduced to computer packages to make life easier, and then how to analyse these results. As the results of health care research are so integral to decision-making and developing new practice within the profession, the book encourages the reader to think critically about data analysis and research design, and how these can impact upon evidence based practice. This critical stance is also crucial in the assessment of the many reports and documents issued within the health industry. Statistics for Health Care Professionals includes practical examples of statistical techniques throughout, and the exercises within and at the end of each chapter help readers to learn and to develop proficiency. There is also a glossary at the end of the book for quick and easy referencing. This book is essential reading for those coming to statistics for the first time within a health care setting.
Healthcare decision makers in search of reliable information that compares health interventions increasingly turn to systematic reviews for the best summary of the evidence. Systematic reviews identify, select, assess, and synthesize the findings of similar but separate studies, and can help clarify what is known and not known about the potential benefits and harms of drugs, devices, and other healthcare services. Systematic reviews can be helpful for clinicians who want to integrate research findings into their daily practices, for patients to make well-informed choices about their own care, for professional medical societies and other organizations that develop clinical practice guidelines. Too often systematic reviews are of uncertain or poor quality. There are no universally accepted standards for developing systematic reviews leading to variability in how conflicts of interest and biases are handled, how evidence is appraised, and the overall scientific rigor of the process. In Finding What Works in Health Care the Institute of Medicine (IOM) recommends 21 standards for developing high-quality systematic reviews of comparative effectiveness research. The standards address the entire systematic review process from the initial steps of formulating the topic and building the review team to producing a detailed final report that synthesizes what the evidence shows and where knowledge gaps remain. Finding What Works in Health Care also proposes a framework for improving the quality of the science underpinning systematic reviews. This book will serve as a vital resource for both sponsors and producers of systematic reviews of comparative effectiveness research.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)