Design of Rotating Electrical Machines

Design of Rotating Electrical Machines

Author: Juha Pyrhonen

Publisher: John Wiley & Sons

Published: 2013-09-26

Total Pages: 612

ISBN-13: 1118701658

DOWNLOAD EBOOK

In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machines An expanded section on the design of permanent magnet synchronous machines, now reporting on the design of tooth-coil, high-torque permanent magnet machines and their properties Large updates and new material on synchronous reluctance machines, air-gap inductance, losses in and resistivity of permanent magnets (PM), operating point of loaded PM circuit, PM machine design, and minimizing the losses in electrical machines> End-of-chapter exercises and new direct design examples with methods and solutions to real design problems> A supplementary website hosts two machine design examples created with MATHCAD: rotor surface magnet permanent magnet machine and squirrel cage induction machine calculations. Also a MATLAB code for optimizing the design of an induction motor is provided Outlining a step-by-step sequence of machine design, this book enables electrical machine designers to design rotating electrical machines. With a thorough treatment of all existing and emerging technologies in the field, it is a useful manual for professionals working in the diagnosis of electrical machines and drives. A rigorous introduction to the theoretical principles and techniques makes the book invaluable to senior electrical engineering students, postgraduates, researchers and university lecturers involved in electrical drives technology and electromechanical energy conversion.


Advancements in Electric Machines

Advancements in Electric Machines

Author: J. F. Gieras

Publisher: Springer Science & Business Media

Published: 2008-11-14

Total Pages: 283

ISBN-13: 1402090072

DOWNLOAD EBOOK

Traditionally, electrical machines are classi?ed into d. c. commutator (brushed) machines, induction (asynchronous) machines and synchronous machines. These three types of electrical machines are still regarded in many academic curricula as fundamental types, despite that d. c. brushed machines (except small machines) have been gradually abandoned and PM brushless machines (PMBM) and switched reluctance machines (SRM) have been in mass p- duction and use for at least two decades. Recently, new topologies of high torque density motors, high speed motors, integrated motor drives and special motors have been developed. Progress in electric machines technology is stimulated by new materials, new areas of applications, impact of power electronics, need for energy saving and new technological challenges. The development of electric machines in the next few years will mostly be stimulated by computer hardware, residential and public applications and transportation systems (land, sea and air). At many Universities teaching and research strategy oriented towards el- trical machinery is not up to date and has not been changed in some co- tries almost since the end of the WWII. In spite of many excellent academic research achievements, the academia–industry collaboration and technology transfer are underestimated or, quite often, neglected. Underestimation of the role of industry, unfamiliarity with new trends and restraint from technology transfer results, with time, in lack of external ?nancial support and drastic - cline in the number of students interested in Power Electrical Engineering.


How to Make Electrical Machines

How to Make Electrical Machines

Author: R. A. R. Bennett

Publisher: DigiCat

Published: 2022-08-15

Total Pages: 91

ISBN-13:

DOWNLOAD EBOOK

DigiCat Publishing presents to you this special edition of "How to Make Electrical Machines" (Containing Full Directions for Making Electrical Machines, Induction Coils, Dynamos, and Many Novel Toys to Be Worked by Electricity) by R. A. R. Bennett. DigiCat Publishing considers every written word to be a legacy of humankind. Every DigiCat book has been carefully reproduced for republishing in a new modern format. The books are available in print, as well as ebooks. DigiCat hopes you will treat this work with the acknowledgment and passion it deserves as a classic of world literature.


Electrical Machines

Electrical Machines

Author: S. K. Sahdev

Publisher: Cambridge University Press

Published: 2017-11-24

Total Pages: 979

ISBN-13: 1108431062

DOWNLOAD EBOOK

Offers key concepts of electrical machines embedded with solved examples, review questions, illustrations and open book questions.


Electrical Machines and Drives

Electrical Machines and Drives

Author: Jan A. Melkebeek

Publisher: Springer

Published: 2018-01-20

Total Pages: 740

ISBN-13: 3319727303

DOWNLOAD EBOOK

This book aims to offer a thorough study and reference textbook on electrical machines and drives. The basic idea is to start from the pure electromagnetic principles to derive the equivalent circuits and steady-state equations of the most common electrical machines (in the first parts). Although the book mainly concentrates on rotating field machines, the first two chapters are devoted to transformers and DC commutator machines. The chapter on transformers is included as an introduction to induction and synchronous machines, their electromagnetics and equivalent circuits. Chapters three and four offer an in-depth study of induction and synchronous machines, respectively. Starting from their electromagnetics, steady-state equations and equivalent circuits are derived, from which their basic properties can be deduced. The second part discusses the main power-electronic supplies for electrical drives, for example rectifiers, choppers, cycloconverters and inverters. Much attention is paid to PWM techniques for inverters and the resulting harmonic content in the output waveform. In the third part, electrical drives are discussed, combining the traditional (rotating field and DC commutator) electrical machines treated in the first part and the power electronics of part two. Field orientation of induction and synchronous machines are discussed in detail, as well as direct torque control. In addition, also switched reluctance machines and stepping motors are discussed in the last chapters. Finally, part 4 is devoted to the dynamics of traditional electrical machines. Also for the dynamics of induction and synchronous machine drives, the electromagnetics are used as the starting point to derive the dynamic models. Throughout part 4, much attention is paid to the derivation of analytical models. But, of course, the basic dynamic properties and probable causes of instability of induction and synchronous machine drives are discussed in detail as well, with the derived models for stability in the small as starting point. In addition to the study of the stability in the small, a chapter is devoted to large-scale dynamics as well (e.g. sudden short-circuit of synchronous machines). The textbook is used as the course text for the Bachelor’s and Master’s programme in electrical and mechanical engineering at the Faculty of Engineering and Architecture of Ghent University. Parts 1 and 2 are taught in the basic course ’Fundamentals of Electric Drives’ in the third bachelor. Part 3 is used for the course ’Controlled Electrical Drives’ in the first master, while Part 4 is used in the specialised master on electrical energy.


Motors for Makers

Motors for Makers

Author: Matthew Scarpino

Publisher: Que Publishing

Published: 2015-11-26

Total Pages: 468

ISBN-13: 0134031326

DOWNLOAD EBOOK

The First Maker-Friendly Guide to Electric Motors! Makers can do amazing things with motors. Yes, they’re more complicated than some other circuit elements, but with this book, you can completely master them. Once you do, incredible new projects become possible. Unlike other books, Motors for Makers is 100% focused on what you can do. Not theory. Making. First, Matthew Scarpino explains how electric motors work and what you need to know about each major type: stepper, servo, induction, and linear motors. Next, he presents detailed instructions and working code for interfacing with and controlling servomotors with Arduino Mega, Raspberry Pi, and BeagleBone Black. All source code and design files are available for you to download from motorsformakers.com. From start to finish, you’ll learn through practical examples, crystal-clear explanations, and photos. If you’ve ever dreamed of what you could do with electric motors, stop dreaming...and start making! Understand why electric motors are so versatile and how they work Choose the right motor for any project Build the circuits needed to control each type of motor Program motor control with Arduino Mega, Raspberry Pi, or BeagleBone Black Use gearmotors to get the right amount of torque Use linear motors to improve speed and precision Design a fully functional electronic speed control (ESC) circuit Design your own quadcopter Discover how electric motors work in modern electric vehicles--with a fascinating inside look at Tesla’s patents for motor design and control!


Analysis of Electrical Machines

Analysis of Electrical Machines

Author: Valeria Hrabovcova

Publisher: BoD – Books on Demand

Published: 2020-05-20

Total Pages: 202

ISBN-13: 183880207X

DOWNLOAD EBOOK

This book is devoted to students, PhD students, postgraduates of electrical engineering, researchers, and scientists dealing with the analysis, design, and optimization of electrical machine properties. The purpose is to present methods used for the analysis of transients and steady-state conditions. In three chapters the following methods are presented: (1) a method in which the parameters (resistances and inductances) are calculated on the basis of geometrical dimensions and material properties made in the design process, (2) a method of general theory of electrical machines, in which the transients are investigated in two perpendicular axes, and (3) FEM, which is a mathematical method applied to electrical machines to investigate many of their properties.


Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems

Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems

Author: Gang Lei

Publisher: Springer

Published: 2016-02-05

Total Pages: 251

ISBN-13: 3662492717

DOWNLOAD EBOOK

This book presents various computationally efficient component- and system-level design optimization methods for advanced electrical machines and drive systems. Readers will discover novel design optimization concepts developed by the authors and other researchers in the last decade, including application-oriented, multi-disciplinary, multi-objective, multi-level, deterministic, and robust design optimization methods. A multi-disciplinary analysis includes various aspects of materials, electromagnetics, thermotics, mechanics, power electronics, applied mathematics, manufacturing technology, and quality control and management. This book will benefit both researchers and engineers in the field of motor and drive design and manufacturing, thus enabling the effective development of the high-quality production of innovative, high-performance drive systems for challenging applications, such as green energy systems and electric vehicles.


Electrical Machines, Drives, and Power Systems

Electrical Machines, Drives, and Power Systems

Author: Theodore Wildi

Publisher: Pearson Educación

Published: 2006

Total Pages: 966

ISBN-13: 9789702608141

DOWNLOAD EBOOK

The HVDC Light[trademark] method of transmitting electric power. Introduces students to an important new way of carrying power to remote locations. Revised, reformatted Instructor's Manual. Provides instructors with a tool that is much easier to read. Clear, practical approach.


Control of Electric Machine Drive Systems

Control of Electric Machine Drive Systems

Author: Seung-Ki Sul

Publisher: John Wiley & Sons

Published: 2011-04-20

Total Pages: 350

ISBN-13: 1118099567

DOWNLOAD EBOOK

A unique approach to sensorless control and regulator design of electric drives Based on the author's vast industry experience and collaborative works with other industries, Control of Electric Machine Drive Systems is packed with tested, implemented, and verified ideas that engineers can apply to everyday problems in the field. Originally published in Korean as a textbook, this highly practical updated version features the latest information on the control of electric machines and apparatus, as well as a new chapter on sensorless control of AC machines, a topic not covered in any other publication. The book begins by explaining the features of the electric drive system and trends of development in related technologies, as well as the basic structure and operation principles of the electric machine. It also addresses steady state characteristics and control of the machines and the transformation of physical variables of AC machines using reference frame theory in order to provide a proper foundation for the material. The heart of the book reviews several control algorithms of electric machines and power converters, explaining active damping and how to regulate current, speed, and position in a feedback manner. Seung-Ki Sul introduces tricks to enhance the control performance of the electric machines, and the algorithm to detect the phase angle of an AC source and to control DC link voltages of power converters. Topics also covered are: Vector control Control algorithms for position/speed sensorless drive of AC machines Methods for identifying the parameters of electric machines and power converters The matrix algebra to model a three-phase AC machine in d-q-n axes Every chapter features exercise problems drawn from actual industry experience. The book also includes more than 300 figures and offers access to an FTP site, which provides MATLAB programs for selected problems. The book's practicality and realworld relatability make it an invaluable resource for professionals and engineers involved in the research and development of electric machine drive business, industrial drive designers, and senior undergraduate and graduate students. To obtain instructor materials please send an email to [email protected] To visit this book's FTP site to download MATLAB codes, please click on this link: ftp://ftp.wiley.com/public/sci_tech_med/electric_machine/ MATLAB codes are also downloadable from Wiley Booksupport Site at http://booksupport.wiley.com