Frontiers and Challenges in Warm Dense Matter

Frontiers and Challenges in Warm Dense Matter

Author: Frank Graziani

Publisher: Springer Science & Business

Published: 2014-04-28

Total Pages: 294

ISBN-13: 3319049127

DOWNLOAD EBOOK

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.


Quantum-Statistical Models of Hot Dense Matter

Quantum-Statistical Models of Hot Dense Matter

Author: Arnold F. Nikiforov

Publisher: Springer Science & Business Media

Published: 2005-02-17

Total Pages: 456

ISBN-13: 9783764321833

DOWNLOAD EBOOK

This book studies the widely used theoretical models for calculating properties of hot dense matter. Calculations are illustrated by plots and tables, and they are compared with experimental results. The purpose is to help understanding of atomic physics in hot plasma and to aid in developing efficient and robust computer codes for calculating opacity and equations of state for arbitrary material in a wide range of temperatures and densities.


Plasma Scattering of Electromagnetic Radiation

Plasma Scattering of Electromagnetic Radiation

Author: John Sheffield

Publisher: Academic Press

Published: 2010-11-25

Total Pages: 512

ISBN-13: 0080952038

DOWNLOAD EBOOK

This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory


The Physics of Inertial Fusion

The Physics of Inertial Fusion

Author: Stefano Atzeni

Publisher: OUP Oxford

Published: 2004-06-03

Total Pages: 488

ISBN-13: 9780191524059

DOWNLOAD EBOOK

This book is on inertial confinement fusion, an alternative way to produce electrical power from hydrogen fuel by using powerful lasers or particle beams. It involves the compression of tiny amounts (micrograms) of fuel to thousand times solid density and pressures otherwise existing only in the centre of stars. Thanks to advances in laser technology, it is now possible to produce such extreme states of matter in the laboratory. Recent developments have boosted laser intensities again with new possibilities for laser particle accelerators, laser nuclear physics, and fast ignition of fusion targets. This is a reference book for those working on beam plasma physics, be it in the context of fundamental research or applications to fusion energy or novel ultra-bright laser sources. The book combines quite different areas of physics: beam target interaction, dense plasmas, hydrodynamic implosion and instabilities, radiative energy transfer as well as fusion reactions. Particular attention is given to simple and useful modelling, including dimensional analysis and similarity solutions. Both authors have worked in this field for more than 20 years. They want to address in particular those teaching this topic to students and all those interested in understanding the technical basis.


Quantum-Statistical Models of Hot Dense Matter

Quantum-Statistical Models of Hot Dense Matter

Author: Arnold F. Nikiforov

Publisher: Springer Science & Business Media

Published: 2006-02-09

Total Pages: 439

ISBN-13: 3764373466

DOWNLOAD EBOOK

This book studies the widely used theoretical models for calculating properties of hot dense matter. Calculations are illustrated by plots and tables, and they are compared with experimental results. The purpose is to help understanding of atomic physics in hot plasma and to aid in developing efficient and robust computer codes for calculating opacity and equations of state for arbitrary material in a wide range of temperatures and densities.


Radiative Properties Of Hot Dense Matter - Proceedings Of The International Workshop

Radiative Properties Of Hot Dense Matter - Proceedings Of The International Workshop

Author: W Goldstein

Publisher: World Scientific

Published: 1991-11-27

Total Pages: 395

ISBN-13: 9814556173

DOWNLOAD EBOOK

This proceedings contains contributions dealing with the radiative properties of dense plasmas, including radiative transport, opacity, atomic processes, spectroscopy, line-shapes and hydrodynamic behavior. Laser-produced plasmas are a primary focus . The latest experimental and theoretical developments are presented and discussed. New results are reported for plasma opacity modeling, plasma-dependent atomic processes, absorption spectroscopy of laser-produced plasmas, statistical treatments of spectral line clusters, and ultra-short pulse laser-plasma spectroscopy.


The XVIII International Conference on Strangeness in Quark Matter (SQM 2019)

The XVIII International Conference on Strangeness in Quark Matter (SQM 2019)

Author: Domenico Elia

Publisher: Springer

Published: 2021-10-05

Total Pages: 615

ISBN-13: 9783030534509

DOWNLOAD EBOOK

This book focuses on new experimental and theoretical advances concerning the role of strange and heavy-flavour quarks in high-energy heavy-ion collisions and in astrophysical phenomena. The topics covered include • Strangeness and heavy-quark production in nuclear collisions and hadronic interactions, • Hadron resonances in the strongly-coupled partonic and hadronic medium, • Bulk matter phenomena associated with strange and heavy quarks, • QCD phase structure, • Collectivity in small systems, • Strangeness in astrophysics,• Open questions and new developments.


Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Phenomenology Of Ultra-relativistic Heavy-ion Collisions

Author: Wojciech Florkowski

Publisher: World Scientific Publishing Company

Published: 2010-03-24

Total Pages: 437

ISBN-13: 9813107596

DOWNLOAD EBOOK

This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.


Nuclear Physics

Nuclear Physics

Author: National Research Council

Publisher: National Academies Press

Published: 1999-03-31

Total Pages: 222

ISBN-13: 0309173663

DOWNLOAD EBOOK

Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.