This book is a rigorous, unified account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. Containing a detailed discussion of the chemical potential and its derivatives, it provides an understanding of the concepts of electronegativity, hardness and softness, and chemical reactivity. Both the Hohenberg-Kohn-Sham and the Levy-Lieb derivations of the basic theorems are presented, and extensive references to the literature are included. Two introductory chapters and several appendices provide all the background material necessary beyond a knowledge of elementary quantum theory. The book is intended for physicists, chemists, and advanced students in chemistry.
Control of the molecular alignment or orientation by laser pulses / Arne Keller -- Quantum computing and devices : A short introduction / Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- Dynamics of mixed classical-quantum systems, geometric quantization and coherent states / Hans-Rudolf Jauslin and Dominique Sugny -- Quantum memories as open systems / Robert Alicki -- Two mathematical problems in quantum information theory / Alexander S. Holevo -- Dissipatively induced bipartite entanglement / Fabio Benatti -- Scattering in nonrelativistic quantum field theory / Jan Derezinski -- Mathematical theory of atoms and molecules / Volker Bach
Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.
This book provides non-specialists with a basic understanding ofthe underlying concepts of quantum chemistry. It is both a text for second or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely user spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference. The keystone is laid in the first two chapters which deal with molecular symmetry and the postulates of quantum mechanics, respectively. Symmetry is woven through the narrative of the next three chapters dealing with simple models of translational, rotational, and vibrational motion that underlie molecular spectroscopy and statistical thermodynamics. The next two chapters deal with the electronic structure of the hydrogen atom and hydrogen molecule ion, respectively. Having been armed with a basic knowledge of these prototypical systems, the reader is ready to learn, in the next chapter, the fundamental ideas used to deal with the complexities of many-electron atoms and molecules. These somewhat abstract ideas are illustrated with the venerable Huckel model of planar hydrocarbons in the penultimate chapter. The book concludes with an explanation of the bare minimum of technical choices that must be made to do meaningful electronic structure computations using quantum chemistry software packages.
This is the first book to provide comprehensive treatment of the use of the symmetric group in quantum chemical structures of atoms, molecules, and solids. It begins with the conventional Slater determinant approach and proceeds to the basics of the symmetric group and the construction of spin eigenfunctions. The heart of the book is in the chapter dealing with spin-free quantum chemistry showing the great interpretation value of this method. The last three chapters include the unitary group approach, the symmetric group approach, and the spin-coupled valence bond method. An extensive bibliography concludes the book.
That there have been remarkable advances in the field of molecular electronic structure during the last decade is clear not only to those working in the field but also to anyone else who has used quantum chemical results to guide their own investiga tions. The progress in calculating the electronic structures of molecules has occurred through the truly ingenious theoretical and methodological developments that have made computationally tractable the underlying physics of electron distributions around a collection of nuclei. At the same time there has been consider able benefit from the great advances in computer technology. The growing sophistication, declining costs and increasing accessibi lity of computers have let theorists apply their methods to prob lems in virtually all areas of molecular science. Consequently, each year witnesses calculations on larger molecules than in the year before and calculations with greater accuracy and more com plete information on molecular properties. We can surely anticipate continued methodological develop ments of real consequence, and we can also see that the advance in computational capability is not about to slow down. The recent introduction of array processors, mUltiple processors and vector machines has yielded a tremendous acceleration of many types of computation, including operations typically performed in quantum chemical studies. Utilizing such new computing power to the ut most has required some new ideas and some reformulations of existing methods.
Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.
Chemical Modelling: Applications and Theory comprises critical literature reviews of molecular modelling, both theoretical and applied. Molecular modelling in this context refers to modelling the structure, properties and reactions of atoms, molecules & materials. Each chapter is compiled by experts in their fields and provides a selective review of recent literature. With chemical modelling covering such a wide range of subjects, this Specialist Periodical Report serves as the first port of call to any chemist, biochemist, materials scientist or molecular physicist needing to acquaint themselves of major developments in the area. Specialist Periodical Reports provide systematic and detailed review coverage in major areas of chemical research. Compiled by teams of leading authorities in the relevant subject areas, the series creates a unique service for the active research chemist, with regular, in-depth accounts of progress in particular fields of chemistry. Subject coverage within different volumes of a given title is similar and publication is on an annual or biennial basis. Current subject areas covered are Amino Acids, Peptides and Proteins, Carbohydrate Chemistry, Catalysis, Chemical Modelling. Applications and Theory, Electron Paramagnetic Resonance, Nuclear Magnetic Resonance, Organometallic Chemistry. Organophosphorus Chemistry, Photochemistry and Spectroscopic Properties of Inorganic and Organometallic Compounds. From time to time, the series has altered according to the fluctuating degrees of activity in the various fields, but these volumes remain a superb reference point for researchers.