Homotopy Theory: An Introduction to Algebraic Topology
Author:
Publisher: Academic Press
Published: 1975-11-12
Total Pages: 383
ISBN-13: 0080873804
DOWNLOAD EBOOKHomotopy Theory: An Introduction to Algebraic Topology
Read and Download eBook Full
Author:
Publisher: Academic Press
Published: 1975-11-12
Total Pages: 383
ISBN-13: 0080873804
DOWNLOAD EBOOKHomotopy Theory: An Introduction to Algebraic Topology
Author: Martin Arkowitz
Publisher: Springer Science & Business Media
Published: 2011-07-25
Total Pages: 352
ISBN-13: 144197329X
DOWNLOAD EBOOKThis is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.
Author: James W. Vick
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 258
ISBN-13: 1461208815
DOWNLOAD EBOOKThis introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Author: Jeffrey Strom
Publisher: American Mathematical Soc.
Published: 2011-10-19
Total Pages: 862
ISBN-13: 0821852868
DOWNLOAD EBOOKThe core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.
Author: Paul Selick
Publisher: American Mathematical Soc.
Published: 2008
Total Pages: 220
ISBN-13: 9780821844366
DOWNLOAD EBOOKOffers a summary for students and non-specialists who are interested in learning the basics of algebraic topology. This book covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, and generalized homology and cohomology operations.
Author: Robert M. Switzer
Publisher: Springer
Published: 2017-12-01
Total Pages: 541
ISBN-13: 3642619231
DOWNLOAD EBOOKFrom the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews
Author: J. P. May
Publisher: University of Chicago Press
Published: 1999-09
Total Pages: 262
ISBN-13: 9780226511832
DOWNLOAD EBOOKAlgebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Author: C. R. F. Maunder
Publisher: Courier Corporation
Published: 1996-01-01
Total Pages: 414
ISBN-13: 9780486691312
DOWNLOAD EBOOKBased on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.
Author: Charles A. Weibel
Publisher: American Mathematical Soc.
Published: 2013-06-13
Total Pages: 634
ISBN-13: 0821891324
DOWNLOAD EBOOKInformally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
Author: George W. Whitehead
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 764
ISBN-13: 1461263182
DOWNLOAD EBOOKAs the title suggests, this book is concerned with the elementary portion of the subject of homotopy theory. It is assumed that the reader is familiar with the fundamental group and with singular homology theory, including the Universal Coefficient and Kiinneth Theorems. Some acquaintance with manifolds and Poincare duality is desirable, but not essential. Anyone who has taught a course in algebraic topology is familiar with the fact that a formidable amount of technical machinery must be introduced and mastered before the simplest applications can be made. This phenomenon is also observable in the more advanced parts of the subject. I have attempted to short-circuit it by making maximal use of elementary methods. This approach entails a leisurely exposition in which brevity and perhaps elegance are sacrificed in favor of concreteness and ease of application. It is my hope that this approach will make homotopy theory accessible to workers in a wide range of other subjects-subjects in which its impact is beginning to be felt. It is a consequence of this approach that the order of development is to a certain extent historical. Indeed, if the order in which the results presented here does not strictly correspond to that in which they were discovered, it nevertheless does correspond to an order in which they might have been discovered had those of us who were working in the area been a little more perspicacious.