The Topology of CW Complexes

The Topology of CW Complexes

Author: A.T. Lundell

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 225

ISBN-13: 1468462547

DOWNLOAD EBOOK

Most texts on algebraic topology emphasize homological algebra, with topological considerations limited to a few propositions about the geometry of simplicial complexes. There is much to be gained however, by using the more sophisticated concept of cell (CW) complex. Even for simple computations, this concept ordinarily allows us to bypass much tedious algebra and often gives geometric insight into the homology and homotopy theory of a space. For example, the easiest way to calculate and interpret the homology of Cpn, complex projective n-space, is by means of a cellular decomposition with only n+ 1 cells. Also, by a suitable construction we can "realize" the sin gular complex of a space as a CW complex and perhaps thus give a more geometric basis for some arguments involving singular homology theory for general spaces and a more concrete basis for singular ho motopy type. As a fInal example, if we start with the category of sim plicial complexes and maps, common topological constructions such as the formation of product spaces, identifIcation spaces, and adjunction spaces lead us often into the category of CW complexes. These topics, among others, are usually not treated thoroughly in a standard text, and the interested student must fInd them scattered through the literature. This book is a study of CW complexes. It is intended to supplement and be used concurrently with a standard text on algebraic topology.


Homology of Cell Complexes

Homology of Cell Complexes

Author: George E. Cooke

Publisher:

Published: 2016-04-19

Total Pages: 0

ISBN-13: 9780691649818

DOWNLOAD EBOOK

Originally published in volume 4 of the Princeton University Press Mathematical Notes series. Based on lecture notes by Norman E. Steenrod. Originally published in 1967. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Homology of Cell Complexes

Homology of Cell Complexes

Author: George E. Cooke

Publisher: Princeton University Press

Published: 2015-12-08

Total Pages: 275

ISBN-13: 140087775X

DOWNLOAD EBOOK

Originally published in volume 4 of the Princeton University Press Mathematical Notes series. Based on lecture notes by Norman E. Steenrod. Originally published in 1967. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Homology Theory

Homology Theory

Author: James W. Vick

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 258

ISBN-13: 1461208815

DOWNLOAD EBOOK

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.


Ends of Complexes

Ends of Complexes

Author: Bruce Hughes

Publisher: Cambridge University Press

Published: 1996-08-28

Total Pages: 384

ISBN-13: 0521576253

DOWNLOAD EBOOK

A systematic exposition of the theory and practice of ends of manifolds and CW complexes, not previously available.


Introduction to Topological Manifolds

Introduction to Topological Manifolds

Author: John M. Lee

Publisher: Springer Science & Business Media

Published: 2006-04-06

Total Pages: 395

ISBN-13: 038722727X

DOWNLOAD EBOOK

Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.


Mathematical Software -- ICMS 2014

Mathematical Software -- ICMS 2014

Author: Hoon Hong

Publisher: Springer

Published: 2014-08-01

Total Pages: 762

ISBN-13: 3662441993

DOWNLOAD EBOOK

This book constitutes the proceedings of the 4th International Conference on Mathematical Software, ICMS 2014, held in Seoul, South Korea, in August 2014. The 108 papers included in this volume were carefully reviewed and selected from 150 submissions. The papers are organized in topical sections named: invited; exploration; group; coding; topology; algebraic; geometry; surfaces; reasoning; special; Groebner; triangular; parametric; interfaces and general.


Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology

Author: James F. Davis

Publisher: American Mathematical Society

Published: 2023-05-22

Total Pages: 385

ISBN-13: 1470473682

DOWNLOAD EBOOK

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.


A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

Published: 1999-09

Total Pages: 262

ISBN-13: 9780226511832

DOWNLOAD EBOOK

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.


Algebraic Topology

Algebraic Topology

Author: Tammo tom Dieck

Publisher: European Mathematical Society

Published: 2008

Total Pages: 584

ISBN-13: 9783037190487

DOWNLOAD EBOOK

This book is written as a textbook on algebraic topology. The first part covers the material for two introductory courses about homotopy and homology. The second part presents more advanced applications and concepts (duality, characteristic classes, homotopy groups of spheres, bordism). The author recommends starting an introductory course with homotopy theory. For this purpose, classical results are presented with new elementary proofs. Alternatively, one could start more traditionally with singular and axiomatic homology. Additional chapters are devoted to the geometry of manifolds, cell complexes and fibre bundles. A special feature is the rich supply of nearly 500 exercises and problems. Several sections include topics which have not appeared before in textbooks as well as simplified proofs for some important results. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (master's) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.