This work is dedicated to the numerically efficient simulation of the material response of polycrystalline aggregates. Therefore, crystal plasticity is combined with a new non-linear homogenization scheme, which is based on piecewise constant stress polarizations with respect to a homogeneous reference medium and corresponds to a generalization of the Hashin-Shtrikman scheme. This mean field approach accounts for the one- and two-point statistics of the microstructure.
artensite forms under rapid cooling of austenitic grains accompanied by a change of the crystal lattice. Large deformations are induced which lead to plastic dislocations. In this work a transformation model based on the sharp interface theory, set in a finite strain context is developed. Crystal plasticity effects, the kinetic of the singular surface as well as a simple model of the inheritance from austenite dislocations into martensite are accounted for.
Dual-phase steels exhibit good mechanical properties due to a microstructure of strong martensitic inclusions embedded in a ductile ferritic matrix. This work presents a two-scale model for the underlying work-hardening effects; such as the distinctly different hardening rates observed for high-strength dual-phase steels. The model is based on geometrically necessary dislocations and comprises the average microstructural morphology as well as a direct interaction between the constituents.
Engineering materials show a pronounced heterogeneity on a smaller scale that influences the macroscopic constitutive behavior. Algorithms for the periodic discretization of microstructures are presented. These are used within the Nonuniform Transformation Field Analysis (NTFA) which is an order reduction based nonlinear homogenization method with micro-mechanical background. Theoretical and numerical aspects of the method are discussed and its computational efficiency is validated.
This work is focused on the prediction of elastic behavior of short-fiber reinforced composites by mean-field homogenization methods, which account for experimentally determined and artificially constructed microstructure data in discrete and averaged form. The predictions are compared with experimental measurements and a full-field voxel-based approach. It is investigated, whether the second-order orientation tensor delivers a sufficient microstructure description for such predictions.
Although several books and conference proceedings have already appeared dealing with either the mathematical aspects or applications of homogenization theory, there seems to be no comprehensive volume dealing with both aspects. The present volume is meant to fill this gap, at least partially, and deals with recent developments in nonlinear homogenization emphasizing applications of current interest. It contains thirteen key lectures presented at the NATO Advanced Workshop on Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials. The list of thirty one contributed papers is also appended. The key lectures cover both fundamental, mathematical aspects of homogenization, including nonconvex and stochastic problems, as well as several applications in micromechanics, thin films, smart materials, and structural and topology optimization. One lecture deals with a topic important for nanomaterials: the passage from discrete to continuum problems by using nonlinear homogenization methods. Some papers reveal the role of parameterized or Young measures in description of microstructures and in optimal design. Other papers deal with recently developed methods – both analytical and computational – for estimating the effective behavior and field fluctuations in composites and polycrystals with nonlinear constitutive behavior. All in all, the volume offers a cross-section of current activity in nonlinear homogenization including a broad range of physical and engineering applications. The careful reader will be able to identify challenging open problems in this still evolving field. For instance, there is the need to improve bounding techniques for nonconvex problems, as well as for solving geometrically nonlinear optimum shape-design problems, using relaxation and homogenization methods.
A single-crystal plasticity model as well as a gradient crystal plasticity model are used to describe the creep behavior of directionally solidi?ed NiAl based eutectic alloys. To consider the transition from theoretical to bulk strength, a hardening model was introduced to describe the strength of the reinforcing phases. Moreover, to account for microstructural changes due to material ?ux, a coupled diffusional-mechanical simulation model was introduced.
In experiments on metallic microwires, size effects occur as a result of the interaction of dislocations with, e.g., grain boundaries. In continuum theories this behavior can be approximated using gradient plasticity. A numerically efficient geometrically linear gradient plasticity theory is developed considering the grain boundaries and implemented with finite elements. Simulations are performed for several metals in comparison to experiments and discrete dislocation dynamics simulations.
Hot stamping is a hot drawing process which takes advantage of the polymorphic steel behavior to produce parts with a good strength-to-weight ratio. For the simulation of the hot stamping process, a nonlinear two-scale thermomechanical model is suggested and implemented into the FE tool ABAQUS. Phase transformation and transformation induced plasticity effects are taken into account. The simulation results regarding the final shape and residual stresses are compared to experimental findings.
We investigate deep material networks (DMN). We lay the mathematical foundation of DMNs and present a novel DMN formulation, which is characterized by a reduced number of degrees of freedom. We present a efficient solution technique for nonlinear DMNs to accelerate complex two-scale simulations with minimal computational effort. A new interpolation technique is presented enabling the consideration of fluctuating microstructure characteristics in macroscopic simulations.