Homogenization of Partial Differential Equations

Homogenization of Partial Differential Equations

Author: Vladimir A. Marchenko

Publisher: Springer Science & Business Media

Published: 2008-12-22

Total Pages: 407

ISBN-13: 0817644687

DOWNLOAD EBOOK

A comprehensive study of homogenized problems, focusing on the construction of nonstandard models Details a method for modeling processes in microinhomogeneous media (radiophysics, filtration theory, rheology, elasticity theory, and other domains) Complete proofs of all main results, numerous examples Classroom text or comprehensive reference for graduate students, applied mathematicians, physicists, and engineers


Homogenization of Differential Operators and Integral Functionals

Homogenization of Differential Operators and Integral Functionals

Author: V.V. Jikov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 583

ISBN-13: 3642846599

DOWNLOAD EBOOK

It was mainly during the last two decades that the theory of homogenization or averaging of partial differential equations took shape as a distinct mathe matical discipline. This theory has a lot of important applications in mechanics of composite and perforated materials, filtration, disperse media, and in many other branches of physics, mechanics and modern technology. There is a vast literature on the subject. The term averaging has been usually associated with the methods of non linear mechanics and ordinary differential equations developed in the works of Poincare, Van Der Pol, Krylov, Bogoliubov, etc. For a long time, after the works of Maxwell and Rayleigh, homogeniza tion problems for· partial differential equations were being mostly considered by specialists in physics and mechanics, and were staying beyond the scope of mathematicians. A great deal of attention was given to the so called disperse media, which, in the simplest case, are two-phase media formed by the main homogeneous material containing small foreign particles (grains, inclusions). Such two-phase bodies, whose size is considerably larger than that of each sep arate inclusion, have been discovered to possess stable physical properties (such as heat transfer, electric conductivity, etc.) which differ from those of the con stituent phases. For this reason, the word homogenized, or effective, is used in relation to these characteristics. An enormous number of results, approximation formulas, and estimates have been obtained in connection with such problems as electromagnetic wave scattering on small particles, effective heat transfer in two-phase media, etc.


An Introduction to Homogenization

An Introduction to Homogenization

Author: Doïna Cioranescu

Publisher: Oxford University Press on Demand

Published: 1999

Total Pages: 262

ISBN-13: 9780198565543

DOWNLOAD EBOOK

Composite materials are widely used in industry: well-known examples of this are the superconducting multi-filamentary composites which are used in the composition of optical fibres. Such materials are complicated to model, as different points in the material will have different properties. The mathematical theory of homogenization is designed to deal with this problem, and hence is used to model the behaviour of these important materials. This book provides a self-contained and authoritative introduction to the subject for graduates and researchers in the field.


Effective Dynamics of Stochastic Partial Differential Equations

Effective Dynamics of Stochastic Partial Differential Equations

Author: Jinqiao Duan

Publisher: Elsevier

Published: 2014-03-06

Total Pages: 283

ISBN-13: 0128012692

DOWNLOAD EBOOK

Effective Dynamics of Stochastic Partial Differential Equations focuses on stochastic partial differential equations with slow and fast time scales, or large and small spatial scales. The authors have developed basic techniques, such as averaging, slow manifolds, and homogenization, to extract effective dynamics from these stochastic partial differential equations. The authors' experience both as researchers and teachers enable them to convert current research on extracting effective dynamics of stochastic partial differential equations into concise and comprehensive chapters. The book helps readers by providing an accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations. Each chapter also includes exercises and problems to enhance comprehension. - New techniques for extracting effective dynamics of infinite dimensional dynamical systems under uncertainty - Accessible introduction to probability tools in Hilbert space and basics of stochastic partial differential equations - Solutions or hints to all Exercises


The Periodic Unfolding Method

The Periodic Unfolding Method

Author: Doina Cioranescu

Publisher: Springer

Published: 2018-11-03

Total Pages: 508

ISBN-13: 9811330328

DOWNLOAD EBOOK

This is the first book on the subject of the periodic unfolding method (originally called "éclatement périodique" in French), which was originally developed to clarify and simplify many questions arising in the homogenization of PDE's. It has since led to the solution of some open problems. Written by the three mathematicians who developed the method, the book presents both the theory as well as numerous examples of applications for partial differential problems with rapidly oscillating coefficients: in fixed domains (Part I), in periodically perforated domains (Part II), and in domains with small holes generating a strange term (Part IV). The method applies to the case of multiple microscopic scales (with finitely many distinct scales) which is connected to partial unfolding (also useful for evolution problems). This is discussed in the framework of oscillating boundaries (Part III). A detailed example of its application to linear elasticity is presented in the case of thin elastic plates (Part V). Lastly, a complete determination of correctors for the model problem in Part I is obtained (Part VI). This book can be used as a graduate textbook to introduce the theory of homogenization of partial differential problems, and is also a must for researchers interested in this field.


Periodic Homogenization of Elliptic Systems

Periodic Homogenization of Elliptic Systems

Author: Zhongwei Shen

Publisher: Springer

Published: 2018-09-04

Total Pages: 295

ISBN-13: 3319912143

DOWNLOAD EBOOK

This monograph surveys the theory of quantitative homogenization for second-order linear elliptic systems in divergence form with rapidly oscillating periodic coefficients in a bounded domain. It begins with a review of the classical qualitative homogenization theory, and addresses the problem of convergence rates of solutions. The main body of the monograph investigates various interior and boundary regularity estimates that are uniform in the small parameter e>0. Additional topics include convergence rates for Dirichlet eigenvalues and asymptotic expansions of fundamental solutions, Green functions, and Neumann functions. The monograph is intended for advanced graduate students and researchers in the general areas of analysis and partial differential equations. It provides the reader with a clear and concise exposition of an important and currently active area of quantitative homogenization.


Partial Differential Equations V

Partial Differential Equations V

Author: M.V. Fedoryuk

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 248

ISBN-13: 3642584233

DOWNLOAD EBOOK

In this paper we shall discuss the construction of formal short-wave asymp totic solutions of problems of mathematical physics. The topic is very broad. It can somewhat conveniently be divided into three parts: 1. Finding the short-wave asymptotics of a rather narrow class of problems, which admit a solution in an explicit form, via formulas that represent this solution. 2. Finding formal asymptotic solutions of equations that describe wave processes by basing them on some ansatz or other. We explain what 2 means. Giving an ansatz is knowing how to give a formula for the desired asymptotic solution in the form of a series or some expression containing a series, where the analytic nature of the terms of these series is indicated up to functions and coefficients that are undetermined at the first stage of consideration. The second stage is to determine these functions and coefficients using a direct substitution of the ansatz in the equation, the boundary conditions and the initial conditions. Sometimes it is necessary to use different ansiitze in different domains, and in the overlapping parts of these domains the formal asymptotic solutions must be asymptotically equivalent (the method of matched asymptotic expansions). The basis for success in the search for formal asymptotic solutions is a suitable choice of ansiitze. The study of the asymptotics of explicit solutions of special model problems allows us to "surmise" what the correct ansiitze are for the general solution.


The General Theory of Homogenization

The General Theory of Homogenization

Author: Luc Tartar

Publisher: Springer Science & Business Media

Published: 2009-12-03

Total Pages: 466

ISBN-13: 3642051952

DOWNLOAD EBOOK

Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of François Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science, new mathematical tools must be introduced, like the author’s H-measures, variants by Patrick Gérard, and others yet to be discovered.


Composite Media and Homogenization Theory

Composite Media and Homogenization Theory

Author: Gianni Dal Maso

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 264

ISBN-13: 1468467875

DOWNLOAD EBOOK

This volume contains the Proceedings of the Workshop on Composite Media and Homogenization Theory held in Trieste, Italy, from January 15 to 26, 1990. The workshop was organized by the International Centre for Theo retical Physics (ICTP); part of the activity was co-sponsored by the Interna tional School for Advanced Studies (SISSA). The workshop covered a broad range of topics in the mathematical the ory of composite materials and homogenization. Among the specific areas of focus were homogenization of periodic and nonperiodic structures, porous me dia, asymptotic analysis for linear and nonlinear problems, optimal bounds for effective moduli, waves in composite materials, optimal design and relaxation, random media. The workshop was actively attended by more than 100 participants from 23 countries. In the afternoon sessions 35 seminars were delivered by the participants. This volume contains research articles corresponding to 14 of the 20 invited talks which were presented. Its content will be of interest both to mathematicians working in the field and to applied mathematicians and engineers interested in modelling the behaviour of composite and random media We are pleased to express here our thanks to the ICTP for having made this workshop possible, to Ms. A. Bergamo for her continuous help during the workshop, and to Ms. C. Parma for her collaboration in editing the proceedings. Gianni Dal Maso Gian Fausto Dell'Antonio SIS SA, Trieste Universita "La Sapienza", Roma v Contents Preface ... v List of Speakers ... ix Contributors ... ... ... ... . xiii ... ... ...


Multiscale Methods

Multiscale Methods

Author: Grigoris Pavliotis

Publisher: Springer Science & Business Media

Published: 2008-01-18

Total Pages: 314

ISBN-13: 0387738290

DOWNLOAD EBOOK

This introduction to multiscale methods gives you a broad overview of the methods’ many uses and applications. The book begins by setting the theoretical foundations of the methods and then moves on to develop models and prove theorems. Extensive use of examples shows how to apply multiscale methods to solving a variety of problems. Exercises then enable you to build your own skills and put them into practice. Extensions and generalizations of the results presented in the book, as well as references to the literature, are provided in the Discussion and Bibliography section at the end of each chapter.With the exception of Chapter One, all chapters are supplemented with exercises.