Riemannian Holonomy Groups and Calibrated Geometry

Riemannian Holonomy Groups and Calibrated Geometry

Author: Dominic D. Joyce

Publisher: Oxford University Press

Published: 2007

Total Pages: 314

ISBN-13: 019921560X

DOWNLOAD EBOOK

Riemannian Holonomy Groups and Calibrated Geometry covers an exciting and active area of research at the crossroads of several different fields in mathematics and physics. Drawing on the author's previous work the text has been written to explain the advanced mathematics involved simply and clearly to graduate students in both disciplines.


Compact Manifolds with Special Holonomy

Compact Manifolds with Special Holonomy

Author: Dominic D. Joyce

Publisher: OUP Oxford

Published: 2000

Total Pages: 460

ISBN-13: 9780198506010

DOWNLOAD EBOOK

This is a combination of a graduate textbook on Reimannian holonomy groups, and a research monograph on compact manifolds with the exceptional holonomy groups G2 and Spin (7). It contains much new research and many new examples.


Submanifolds and Holonomy

Submanifolds and Holonomy

Author: Jurgen Berndt

Publisher: CRC Press

Published: 2016-02-22

Total Pages: 494

ISBN-13: 1482245167

DOWNLOAD EBOOK

Submanifolds and Holonomy, Second Edition explores recent progress in the submanifold geometry of space forms, including new methods based on the holonomy of the normal connection. This second edition reflects many developments that have occurred since the publication of its popular predecessor.New to the Second EditionNew chapter on normal holonom


Dynamics of Foliations, Groups and Pseudogroups

Dynamics of Foliations, Groups and Pseudogroups

Author: Pawel Walczak

Publisher: Springer Science & Business Media

Published: 2004-04-23

Total Pages: 244

ISBN-13: 9783764370916

DOWNLOAD EBOOK

This book deals with the dynamics of general systems such as foliations, groups and pseudogroups, systems which are closely related via the notion of holonomy. It concentrates on notions and results related to different ways of measuring complexity of systems under consideration. More precisely, it deals with different types of growth, entropies and dimensions of limiting objects. Problems related to the topics covered are provided throughout the book.


Foliations

Foliations

Author: Alberto Candel

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 424

ISBN-13: 9780821872130

DOWNLOAD EBOOK


Calabi-Yau Manifolds and Related Geometries

Calabi-Yau Manifolds and Related Geometries

Author: Mark Gross

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 245

ISBN-13: 3642190049

DOWNLOAD EBOOK

This is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory. Proofs or sketches are given for many important results. From the reviews: "An excellent introduction to current research in the geometry of Calabi-Yau manifolds, hyper-Kähler manifolds, exceptional holonomy and mirror symmetry....This is an excellent and useful book." --MATHEMATICAL REVIEWS


Lie Groups, Differential Equations, and Geometry

Lie Groups, Differential Equations, and Geometry

Author: Giovanni Falcone

Publisher: Springer

Published: 2017-09-19

Total Pages: 368

ISBN-13: 3319621815

DOWNLOAD EBOOK

This book collects a series of contributions addressing the various contexts in which the theory of Lie groups is applied. A preliminary chapter serves the reader both as a basic reference source and as an ongoing thread that runs through the subsequent chapters. From representation theory and Gerstenhaber algebras to control theory, from differential equations to Finsler geometry and Lepage manifolds, the book introduces young researchers in Mathematics to a wealth of different topics, encouraging a multidisciplinary approach to research. As such, it is suitable for students in doctoral courses, and will also benefit researchers who want to expand their field of interest.


Introduction to Topological Quantum Computation

Introduction to Topological Quantum Computation

Author: Jiannis K. Pachos

Publisher: Cambridge University Press

Published: 2012-04-12

Total Pages: 220

ISBN-13: 1107005043

DOWNLOAD EBOOK

Ideal for graduate students and researchers from various sub-disciplines, this book provides an excellent introduction to topological quantum computation.


Handbook of Pseudo-Riemannian Geometry and Supersymmetry

Handbook of Pseudo-Riemannian Geometry and Supersymmetry

Author: Vicente Cortés

Publisher: European Mathematical Society

Published: 2010

Total Pages: 972

ISBN-13: 9783037190791

DOWNLOAD EBOOK

The purpose of this handbook is to give an overview of some recent developments in differential geometry related to supersymmetric field theories. The main themes covered are: Special geometry and supersymmetry Generalized geometry Geometries with torsion Para-geometries Holonomy theory Symmetric spaces and spaces of constant curvature Conformal geometry Wave equations on Lorentzian manifolds D-branes and K-theory The intended audience consists of advanced students and researchers working in differential geometry, string theory, and related areas. The emphasis is on geometrical structures occurring on target spaces of supersymmetric field theories. Some of these structures can be fully described in the classical framework of pseudo-Riemannian geometry. Others lead to new concepts relating various fields of research, such as special Kahler geometry or generalized geometry.


Extrinsic Geometry of Foliations

Extrinsic Geometry of Foliations

Author: Vladimir Rovenski

Publisher: Springer Nature

Published: 2021-05-22

Total Pages: 319

ISBN-13: 3030700674

DOWNLOAD EBOOK

This book is devoted to geometric problems of foliation theory, in particular those related to extrinsic geometry, modern branch of Riemannian Geometry. The concept of mixed curvature is central to the discussion, and a version of the deep problem of the Ricci curvature for the case of mixed curvature of foliations is examined. The book is divided into five chapters that deal with integral and variation formulas and curvature and dynamics of foliations. Different approaches and methods (local and global, regular and singular) in solving the problems are described using integral and variation formulas, extrinsic geometric flows, generalizations of the Ricci and scalar curvatures, pseudo-Riemannian and metric-affine geometries, and 'computable' Finsler metrics. The book presents the state of the art in geometric and analytical theory of foliations as a continuation of the authors' life-long work in extrinsic geometry. It is designed for newcomers to the field as well as experienced geometers working in Riemannian geometry, foliation theory, differential topology, and a wide range of researchers in differential equations and their applications. It may also be a useful supplement to postgraduate level work and can inspire new interesting topics to explore.